FEDERAL UNIVERSITY LOKOJA

DEPARTMENT OF COMPUTER SCIENCE

B.Sc. COMPUTER SCIENCE

STUDENT HANDBOOK

2021/2022 - 2025/2026

Table of Content

Title

Table	of Content1				
Preface					
Staff L	Staff List				
1.0	History of the Department7				
2.0	Philosophy7				
2.1	Vision7				
2.2	Mission7				
3.0	Aim7				
4.0	General Objectives7				
5.0	Program Expected Learning Outcome				
6.0	Programme Offered and Duration				
6.1	Semester Duration				
7.0	Admission and Graduation Requirements				
7.1	4-years Full-Time Degree Programme				
7.2	3-years Full-Time Degree Programme (Direct Entry)9				
7.3	Requirements for Graduation9				
8.0	Requirements for Award of Degree9				
9.0	Registration of Courses9				
9.1	General Registration Guidelines9				
9.2	Classification of Registration Courses				
9.3	Workload 10				
9.4	Deferment				
10.0	Examination Guidelines				
10.1	Eligibility to write End of Semester Examination10				
10.2	Examination Conducts11				
10.3	Discipline11				
11.0	Grading System				
12.0	Clear Academic Standing, Warning, Probation, and Withdrawal12				
12.1	Clear Academic Standing				
12.2	Warning 12				
12.3	Academic Probation				
13	Withdrawal for Academic Failure				
13.0	Computation of Results				

13.1	Numerical Example and Computation	13
14.0	Departmental Issue Resolution Process	13
15.0	Departmental Designations	14
16.0	Course Evaluation	14
16.1	Techniques of Students Assessment	14
17.0	Illness	15
18.0	Course Structure	15 17 17 18 18 19
19.0 C	Course Contents And Description	20
19.1	100 Level First Semester	20
19.2	100 Level Second Semester	21
19.3	200 Level First Semester	23
19.4	200 Level Second Semester	32
19.5	300 Level First Semester	49
19.6	300 Level Second Semester	81
19.7	400 Level First Semester	81
19.8	400 Level Second Semester	113

Preface

The world as we come to see it today is shaped by technologies largely made possible by computers. Looking at the advancement in technology today, one would not have believed that the first set of computers were developed less than a century ago and seem to have taken over every aspect of human endeavour.

The Computer Science Department at the Federal University Lokoja seeks to rigorously train students interested in theoretical computing and its applications to solving human problems. The curriculum is specially designed to allow students to pursue the area(s) of Computer Science that they find most interesting while providing an overall solid foundation for advanced research.

This is the third edition of the handbook for the Department. The revisions are necessary to accommodate the new changes as provided in the Minimum Academic Standards of the National Universities Commission (NUC) and provide a guide to the program and expectations for the next three or four years. In addition to providing the mission, vision, objectives and expected learning outcomes of the BSc Computer Science program; the handbook covers topics like entry and admission requirements for both Unified Tertiary Matriculation Examination (UTME) and Direct Entry (DE) candidates, graduation requirements, rules and regulations guiding the registration of courses, course listing, and detailed individual course descriptions. Also covered are information about the administration of the department, staff lists, and every other information necessary for both candidates aspiring to the program and those currently enrolled in the department.

I most sincerely welcome you to the most relevant degree program in the age of "e-everything".

Prof. Francisca O. Oladipo, PhD, FASI, FNCS, FPASRC Head of Department of Computer Science francisca.oladipo@fulokoja.edu.ng

Staff List

Teaching Staff

			ODE CLAIR A TRONG	DANIZ
S/N	NAME	QUALIFICATION	SPECIALIZATION	RANK
1	Prof. Sunday Eric Adewumi	B.Sc.(UI), M.Sc. (Jos), Ph.D. (ATBU), FNCS, MCPN, C.itp	Computer Science (Numerical Algorithm)	Professor
2	Prof. Francisca Oladipo	B.Sc.(NAU), M.Sc.(NAU), Ph.D.(NAU), GTCert(MIT), FASI, Citp, FNCS, FPASRC, MCPN	Software Engineering, uComputing, Engineering of PLs, Internetware, Data Transformation, Machine Learning & Data Science	Professor
3	Dr Edgar Osaghae	B.Sc.(Uniben), M.Sc.(Uniben), Ph.D.(Uniben), FASI, MNCS, MCPN	AntivirusSystems,MalwareAnalysis,Algorithms,PackedPrograms,ExecutablePacker	Reader
4	Dr Taiwo Kolajo	B.Sc.(Unilorin), M.Sc.(UI), Ph.D.(CU) PGDE(BUK), MNCS, MTRCN, FTWASRAT	Data Mining, Data Science, Big Data Analytics, Natural Language Processing	Senior Lecturer
5	Dr Emeka Ogbuju	B.Sc., M.Sc. (NAU), MNCS, MCPN	Big Data Analytics, Web/Text Mining, Data Modelling, Machine Learning	Senior Lecturer
6	Dr Fredrick Duniya Basaky	B.Sc, ABU/ ECOTES, M.SC; NOUN; Ph.D; UAS, MCPN, MNCS, MAITP	Computer/Network Security IT Engineering.	Lecturer I
6	Dr Victoria I. Yemi- Peters	B.Sc. (UDUS), M.Sc.(UNN), PGDE(UDUS), Ph.D.(KSU), MNCS, MCIA	Data Mining, Artificial Intelligence, Machine Learning, Health Informatics	Lecturer I
7	Dr Terungwa-Simon Yange	B.Sc.(BSUM), M.Sc.(OAU), Ph.D.(OAU), OCA, MCPN(Ctip), MNCS, MAITP, MDSN, MIASED, MIAENG, MNIM, MPCARE	Data Science &Engineering, Information System and Software Engineering.	Lecturer I
9	Mr Ovye Abari John	B.Sc.(NSUK), M.Sc.(Unilorin)	Computer Security, Artificial Intelligence	Lecturer II
10	Mr Ahmad Muhammed Shehu	B.Sc.(IBBU, Lapai), M.Sc.(Malaysia)	Data Mining and Software Development	Lecturer II
11	Mr Haruna Abdu	B.Sc.,M.Sc. (UMYU),MNCS	Programming, Artificial Intelligence	Asst Lecturer
12	Mr Malik Rufai Adeiza	B.Sc., M.Sc. (Uni-Agric)	Data Security, Machine Learning, Data Science	Asst Lecturer
13	Mr Olalekan Ihinkalu	Dip, B.Sc.(Jos), M.Sc.	Computer Science	Asst Lecturer
14	Mrs Temitope Oluwafemi	B.Sc.(Jos), M.Sc.(UI), MNIWIIT	Computer Science	Asst Lecturer

15	Mrs Fati Oiza Ochepa	B.Sc.(ABU), M.Sc. (UTM), MNCS, MNIWIIT	Computer Science	Asst Lecturer
16	Mr Abubakar Aliyu	B.Sc., M.Sc. (UMYU)	Computer Science	Asst Lecturer
17	Miss Memunat A. Ibrahim	BSc (FUL), MSc (ANU)	Computer Science	Grad Assistant
18	Mrs Linda O Okpanachi	BSc (FUL)	Computer Science	Grad Assistant
19	Mr Musa Kunya	BSc (BUK)	Computer Science	Grad Assistant
20	Mr Jatto A. AbdulWahab	BSc (FUL)	Computer Science	Grad Assistant
21	Mr Ahad Obansa	BSc (FUL)	Computer Science	Grad Assistant

Technical Staff

S/N	NAME	QUALIFICATION	SPECIALIZATION	RANK
1	Mr Kayode Marouf	ND, HND, BSc, MTech (in	Computer Science	Chief
	Agbaje	view)		Technologist
2	Mr Umeh Paulinus	BSc, MIT	Computer Networking	Principal
				Hardware
				Specialist
2	Mr Dauda Isiaka	HND, PGD, BSc, MSc (in	Computer Hardware	Senior
		view)	_	Hardware
				Specialist
4	Mr Babatunde Stephen	BEng, MIT	Networking, Security,	Senior
	Osanaiye		Artificial Intelligence	Technologist

Administrative Staff

S/N	NAME	QUALIFICATION	RANK
1	Mrs Hawawu Muhammed	BSc, MPA, MSc (in view)	Administrative Officer
2	Mrs Hellen Obiageli Uwaechia	BSc, MSc (in view)	
3	Mr Ojonuba Ochagana Samuel	ND, Diploma	Senior Executive Officer (Admin)

Staff Contacts

S/N	NAME	EMAIL ADDRESS
1	Prof. Sunday Eric Adewumi	sunday.adewumi@fulokoja.edu.ng
2	Prof. Francisca Oladipo	francisca.oladipo@fulokoja.edu.ng
3	Dr. Edgar O. Osaghae	edgar.osaghae@fulokoja.edu.ng
4	Emeka Ogbuju Emmanuel	emeka.ogbuju@fulokja.edu.ng
5	Dr. Fredrick Duniya Basaky	fredrick.basaky@fulokoja.edu.ng
6	Dr. Taiwo Kolajo	taiwo.kolajo@fulokoja.edu.ng
7	Dr. Victoria I. Yemi-Peters	victoria.yemi-peters@fulokoja.edu.ng
8	Olalekan Ihinkalu Ebenezer	ihinkalu.olalekan@fulokoja.edu.ng
9	Ovye Abari John	ovye.abari@fulokoja.edu.ng
10	Ahmad Muhammad Shehu	ahmad.mohammad@fulokoja.edu.ng
11	Rufai Malik Adeiza	rufai.malik@fulokoja.edu.ng
12	Haruna Abdu	haruna.abdu@fulokoja.edu.ng
13	Mr. Olalekan Ihinkalu	olalekan.ihinkalu@fulokoja.edu.ng
14	Mrs. Temitope Oluwafemi	temitope.oluwafemi@fulokoja.edu.ng
15	Mrs. Fati Oiza Ochepa	fati.ochepa@fulokoja.edu.ng
16	Mr. Abubakar Aliyu	abubakar.aliyu@fulokoja.edu.ng
17	Miss Memunat A. Ibrahim	memunat.ibrahim@fulokoja.edu.ng

18	Mrs Linda O Okpanachi	linda.okpanachi@fulokoja.edu.ng
19	Mr. Musa Kunya	musa.kunya@fulokoja.edu.ng
20	Mr. Jatto A. AbdulWahab	jatto.abdulwahab@fulokoja.edu.ng
21	Ahad Obansa	ahad.obansa@fulokoja.edu.ng
22	Mrs Hawawu Muhammed	hawawu.mohammed@fulokoja.edu.ng
23	Mrs Hellen Obiageli Uwaechia	hellen.uwaechia@fulokoja.edu.ng
24	Ojonuba Ochagana Samuel	samuel.ochagana@fulokoja.edu.ng

1.0 History of the Department

The Computer Science Department is one of the 11 that commenced activities in the 2012/2013 academic session with the admission of forty-two (42) students, nine (9) academic staff, and one (1) non-academic staff, with Professor Sunday Eric Adewumi as the pioneer Head of Department. The initial academic programme adopted the NUC Minimum Academic Benchmark but was subsequently reviewed in 2014 and 2018 to accommodate present realities and key into the grand challenges in Computer Science.

After the graduation of the first set of students in 2016, the Department was ripe for the commencement of higher degrees. Consequently, during the 2019/2020 Academic Session, the Department welcomed the first set of students into the Postgraduate Diploma (PGD), Master of Science (MSc), and Doctor of Philosophy (Ph.D.) in Computer Science. The Department has a well-equipped computer laboratory furnished for practical applications in solving real problems for both undergraduate and postgraduate students.

Presently, the Department is staffed with qualified academic staff in diverse areas of Computer Science. They contribute to undergraduate and postgraduate training, thereby giving the students all they need to become Computer Scientists ready to take on the challenges confronting the nation and provide solutions. The leadership of the department continues to leverage their teaching and research experiences, both local and international, to garner international linkages for the University and enable cooperation with foreign institutions in many areas, including research and exchange programmes.

The Department shall continue to introduce innovative teaching and research styles to produce undergraduate and graduate students who can think critically and creatively to solve local and global real-life problems. The strategies will enable the students to be competitive, have independent thinking, and engage in successful careers anywhere. All the staff of the Department is committed to providing technical leadership by applying their computing knowledge to solving significant problems across a broad range of application areas. They can derive and use techniques, skills, and tools necessary for computing and engineering practice, offer exciting solutions that benefit humanity and the natural environment.

2.0 Philosophy

The programme, by way of providing students with a broad and balanced foundation of Computer Science knowledge and skills, aims at producing Computer Science graduates that can apply knowledge and skills for solving theoretical and practical problems in Computer Science and the development of relevant ICT for national development. They are also expected to acquire knowledge and skills to undertake further studies in Computer Science and multidisciplinary areas related to Computer Science. They should be able to acquire a range of applicable information technology skills to various aspects of human endeavours. They should demonstrate general skills relating to non-subject-specific competencies, ICT capacity, communication, interpersonal and organization skills.

2.1 Vision

To be the most outstanding Computer Science department among the nine newly established Federal Universities in Nigeria in 2011 and one of Africa's top-ranking academic programme departments.

2.2 Mission

To produce graduates who can develop and deploy cutting-edge applications geared towards solving societal challenges.

3.0 Aim

To produce graduates with in-depth knowledge and appropriate skills for high theoretical, practical, and professional proficiencies in the foundations of Computer Science and its evolving disciplines.

4.0 General Objectives

The objectives of B.Sc. Computer Science programme are:

- i. to create in students the awareness of and enthusiasm for computer science and its capabilities.
- ii. to involve the students in an intellectually stimulating and satisfying experience of learning and studying

- iii. to provide a broad and balanced foundation in computer science knowledge and practical skills.
- iv. to develop in students through an education in computer science a range of applicable transferable information technology skills to all aspects of human endeavours.
- v. to generate an appreciation of the importance of computer in an industrial, economic, technological, and social context.
- vi. to provide students with knowledge and skills base for further studies in computer science or multidisciplinary studies involving computer science.
- vii. to acquire knowledge and skills to undertake further studies in Computer Science and multidisciplinary areas related to Computer Science.

5.0 Program Expected Learning Outcome

On successful completion of the B.Sc. Computer Science program, students will have:

- i. knowledge of basic science and computer science fundamentals
- ii. understanding of entrepreneurship, the need for and process of innovation, as well as the need and capacity for lifelong learning
- iii. in-depth technical competence in the discipline of computer science
- iv. an ability to carry out problem analysis, requirements capture, problem formulation, and integrated software development for the solution of a problem
- v. capacity to continue developing relevant knowledge, skills, and expertise in computer science throughout their careers
- vi. an ability to communicate effectively with other computer scientists, software engineers, other professional disciplines, managers, and the community generally
- vii. an ability to undertake and coordinate large computer science projects and to identify problems, their formulation, and solution
- viii. an ability to function effectively as an individual, as a team member in multidisciplinary and multicultural teams, and as a leader/manager with the capacity to assist and encourage those under their direction
- ix. understanding of the social, cultural, global, and business opportunities of the professional computer scientist as well as an understanding of the need for and principles of sustainability and adaptability
- x. understanding of and commitment to professional and ethical responsibilities

6.0 Programme Offered and Duration

The Department of computer science offers undergraduate courses leading to the award of the Bachelor of Science (B.Sc.) Honour Degree in Computer Science. The duration for the award of the B.Sc. (Hons.) degree shall be for four (4) years (Eight Semesters) for Unified Tertiary Matriculation Examination (UTME) candidates and three (3) years (6 Semesters) for Direct Entry (DE) candidates. However, students that fail to graduate within the normal number of sessions will not be allowed to exceed a total of six (6) years (12 Semesters), if admitted through the UTME and five (5) years (10 Semesters) if admitted through DE.

6.1 Semester Duration

A minimum of 15 weeks shall normally be reserved for teaching during each semester, excluding public holidays and semester breaks. One (1) to three (3) weeks shall be reserved for examinations after the teaching period.

7.0 Admission and Graduation Requirements

In addition to the general requirements for admission into the University, candidates intending to study **B.Sc. Computer Science** must fulfill any of the conditions below:

7.1 4-years Full-Time Degree Programme

a) The entry requirements for 100 level shall be at least five SSCE (NECO and WAEC or its equivalence) passes at credit level to include English Language, Mathematics, Physics and any other two science subjects chosen from Chemistry, Biology/Agricultural Science in not more than two (2) sittings.

b) <u>UTME Subjects:</u> The acceptable UTME subjects for admission into 100 level are English, Mathematics, Physics, and any one of Chemistry or Agricultural Science/Biology.

7.2 3-years Full-Time Degree Programme (Direct Entry)

In addition to (a) above, candidates satisfying any of the two conditions below may undertake the three-year direct entry degree programme:

- c) IJMB: Two A' Level passes in Mathematics, and any of Physics, Chemistry or Biology/Zoology/Botany.
- d) GCE A' Level: Two A' Level passes to include Computer Science/Information Technology and any one of Physics, Mathematics, Chemistry, and Biology.
- e) OND/ND/NCE/ in Computer Science/Computer Engineering/Computer Studies with at least lower credit.

7.3 Requirements for Graduation

For a candidate to be eligible for graduation and the award of a degree of Bachelor of Science in Computer Science, the candidate must have successfully completed all prescribed courses as contained in this programme curriculum and must attain the following:

- i) A pass grade in Supervised Industrial Work Experience Scheme (SIWES).
- ii) A minimum of CGPA of 1.00.
- iii) A minimum of 128 units core courses, with a minimum of 21 units electives.
- iv) A pass grade is required in all prescribed core courses of the programme.
- v) A student may take some elective courses to meet the graduation requirement.

The graduation requirement for B.Sc. (Hons) Computer Science is summarized below:

	100 Level	200 Level	300 Level	400 Level	TOTAL
Core Courses	25	30	27	31	113
Electives	6	6	3	6	21
Core Course (GST)	10	5	-	_	15
TOTAL	41	41	30	37	149

The above summary table shows that for a student to graduate, he/she needs to register a total of at least 149 credit units, of which 128 credits must be core.

8.0 Requirements for Award of Degree

For a candidate to be eligible for the award of a degree of B.Sc. in Computer Science, the candidate must have successfully completed all prescribed courses as contained in the course description. The minimum number of units for the award of the degree shall be 149 units and 119 units for a **4-year** and **3-year** degree programme, respectively. These consist of:

4-years	degree	programme	
	~		

Total:	149 units
Elective courses:	21 units
GST courses:	15 units
Compulsory courses:	113 units

3 -years degree programme (Direct Entry)					
	Compulsory courses:	88 units			
	GST courses:	16 units			
	Elective courses:	15 units			
	Total:	119 units			
9.0	Registration of Courses				
9.1	General Registration Guidelines				

- a) Students must be aware of the time schedule for registration and must always be in possession of proper identification.
- b) Student must consult with his level coordinator before filling the course registration form.
- c) The Department must approve unrestricted elective courses chosen outside those listed.
- d) At the point of registration, a student is expected to pay NACOSS and FOSSA dues and settle other charges as may be required from time to time.
- e) De-registration of the undergraduate project is not allowed beyond the second semester.
- f) Registration problems associated with ill-health may be entertained (if supported with a medical report that the University Health Service authenticates).
- g) A student is regarded as bonafide only when the necessary registration forms have duly been submitted to the Departmental Registration Officer. Therefore, students are advised to adhere to registration guidelines in their own interest strictly.

9.2 Classification of Registration Courses

<u>Compulsory Courses (C)</u>: These are courses that must be passed and used in computing the final result irrespective of the number of attempts as long as the programme permits.

<u>Elective Courses (E)</u>: These are courses chosen by students according to their interest and on advice or guidance of their course adviser, in addition to those they must take to complete their degree requirement. It is advisable to pass the Electives because they will be used for the computation of results.

<u>*Pre-requisite:*</u> These courses must be taken and passed before the student can register for a more advanced course. The 400 Level students who have attempted a pre-requisite course but failed it can register it along with higher level course.

9.3 Workload

A Student shall normally be allowed to register for and take a minimum of 15 units and a maximum of 24 units in any Semester. This means that no student can be credited less than 30 units or more than 48 units at the end of each academic year. The 400 Level students can register up to 30 units per semester and a total of 60 units per academic session. Note that a course with 3 units implies 3 hours of lecture and 1 hour of tutorial per week.

9.4 Deferment

For a good cause, a student who wishes to defer a semester or a whole session must put a formal application to the Vice-Chancellor through the Head of Department and the Dean of Faculty for consideration and approval by the Senate. This must be done in good time for such a request to be tendered for consideration and final approval. Deferment can be sought on the following ground:

- (i) Admission related issue
- (ii) Ill health
- (iii) Emotional stress
- (iv) Other special circumstances

10.0 Examination Guidelines

Examinations are normally held at the end of each semester. Examinations may take the form of written papers, oral examinations, practical, the submission of projects, and any combination of these or any other form approved by the Senate. The Continuous Assessment (C.A.) of course work is normally included in determining examination results.

10.1 Eligibility to write End of Semester Examination

To be eligible for admission into any examination, a student must have been registered for the course unit to be examined and must have fulfilled the University requirements concerning residence, fees, or other related matters. At least 75% attendance is required in all classes,

tutorials, laboratories, etc., to qualify for examinations.

10.2 Examination Conducts

- 1. A student must be at the examination venue at least thirty (30) minutes before the time of the examination. A student is admitted within thirty (30) minutes after the examination has commenced but shall not be allowed extra time. On no account shall a student be allowed to leave the venue during the first hour or the last fifteen (15) minutes of the examination. A student must hand over his/her scripts to the invigilator before leaving if he/she does not intend to come back.
- 2. A student who leaves the examination room shall not be admitted back unless he/she has been continually under the surveillance of an Invigilator/Assistant Invigilator.
- 3. A student shall come along with his/her ID card and Examination Card in each examination and display them conspicuously on his desk. Each student shall complete an Attendance List bearing his/her name and matriculation number by signing during each examination.
- 4. No book, printed paper or written document, or unauthorized materials shall be allowed into an examination room by any student, except as stated in the rules of the examination paper. A student must not directly or indirectly give assistance to any other student during an examination or permit any other student to copy from or otherwise use his papers. Similarly, a student must not directly accept assistance from any other student or use any other student's paper.
- 5. Suppose any student is suspected to have infringed on any of the above provisions or in any way to have cheated or disturbed the conduct of the examinations. In that case, a report shall be made as soon as possible from the Department to the Faculty Examination Officer and the Dean. The Dean will cause the circumstances to be investigated and reported to the Board of Examiners. The student involved shall be allowed to continue with the examination provided he does not cause any disturbance; however, the Board of Examiners may subsequently recommend to the Faculty Board and Senate whether his paper should be accepted and any other action that shall be taken on the matter.
- 6. A student shall write his examination number and not his name distinctly in the space provided at the top of the cover of every answer booklet or a separate sheet of paper. The use of scrap paper is strictly prohibited as all rough work must be done in the answer booklet, which must be submitted to the invigilator. Except for printed question paper, the students may not remove mutilate from the examination room or any paper or other materials supplied. At the end of the time allotted for the examination, each student shall cease writing when instructed to do so and gather his/her scripts together for collection by the invigilator.

10.3 Discipline

The examination regulation set out above binds all students, the breach of which carries serious punishments prescribed below:

(i) **Expulsion from the University**

The following offences shall carry the punishment of expulsion:

- (a) Impersonation at examinations. This may involve an exchange of examination numbers, name/answer sheets, or intentional use of someone else's examination number.
- (b) Exchange of relevant materials in examination hall which may involve the exchange of question papers containing relevant jotting and materials.
- (c) Exchange of answer scripts.
- (d) Introduction of foreign materials to the examination hall.

(ii) Rustication for one academic year

The following offences shall carry the punishment of rustication for one academic session:

- (e) Non-submission or incomplete submission of answer scripts.
- (f) Collaboration/copying from each other.

(iii) Written Warning

The following offences shall attract a written warning:

- (g) Speaking/conversation during examination
- (h) Writing on question papers.

11.0 Grading System

Each course is examined at the end of the Semester in which it is offered. Students' progress is assessed through continuous assessment (i.e., by way of tests, written assignments, and other appropriate methods) consisting of 40% during the Semester. Examination at the end of the Semester carries 60%. Thus, the totality of every grade in each course is based on 100% marks. The score from each course is assigned appropriate letter grade as follows:

(i) Credit Units	(ii) Percentil e Scores	(iii) Letter Grade s	(iv) Grad e Points (GPA)	(v) Grade Point Averag e (GPA)	(vi) Cumulative Grade Point Average (CGPA)	(vii) Class of Degree
Vary according	70 - 100	А	5	Derived by	4.50 - 5.00	First Class
to contact hours	60 - 69	В	4	multiplying	3.50 - 4.49	2 nd Class
assigned to each	50 - 59	С	3	(i) and (iv)	2.40 - 3.49	Upper 2 nd
course per week	45 - 49	D	2	and dividing	1.50 - 2.39	Class Lower
per semester and	40 - 44	Е	1	by Total	1.00 - 1.49	Third Class
according to	0 - 39	F	0	Credit Units		Pass Degree
workload carried						
by						
student						

12.0 Clear Academic Standing, Warning, Probation, and Withdrawal

The academic standing of a student is being determined by the Cumulative Grade Point Average (CGPA). The minimum CGPA is 1.00.

12.1 Clear Academic Standing

For a student to be on Clear Academic Standing, he/she should have a CGPA of not less than 1.00.

12.2 Warning

A student is warned if his/her CGPA drops below the minimum tolerable CGPA for the first time. This warning is usually in the form of verbal advice by the Level Coordinator, and the student should be made to be fully aware of the implication of dropping below the minimum tolerable CGPA in the next semester examinations.

12.3 Academic Probation

A student will be placed on Academic Probation if he/she fails to maintain a minimum CGPA of 1.00 at the end of the session. The probationary status shall be reversed if the student maintains a CGPA of at least 1.00 in any subsequent semester after the first year. The responsibility to reverse the probationary status rests with the student. A preliminary notice of poor academic standing shall be given to a student in writing by the University.

13 Withdrawal for Academic Failure

A student shall be required to withdraw for academic failure if he/she fails to maintain a CGPA of 1.00 in two (2) consecutive Academic Sessions at the end of any session.

13.0 Computation of Results

The following terminologies and abbreviations are commonly used in the computation of results.

1. Total Registered Credit Units (TRCU): This is the summation of the Units' load $n_{i=}^{n} U_{i}$) of all courses offered during the semester. For example, a student who is 1

taking 3 courses of 3 Units each, as presented in table 2, has TRCU = $3 \times 3 = 9$ units.

2. Total Credit Passed (TCP): This is the sum of the product of the course units and the grade points in each for the semester $(\sum_{i=1}^{n} U_i P_i)$ - where P is the Grade Point attached

to the course and U is the course unit from the table in 12.1).

3. Grade Point Average (GPA): Total Credit Passed (TCP) divided by the Total Registered Credit Unit (TRCU)

 $TCP = (3 \times 5) + (3 \times 4) + (3 \times 2) = 33$

4. Cumulative Credit Point Average (CCPA): This is the summation of Total Credit Passed (TCP) over all semesters from the beginning to date.

13.1 Numerical Example and Computation

100 Level First Semester Scores

Course Code	TRCU	Score	Points	ТСР
CSC101	2	76	5	$2 \times 5 = 10$
MTH111	3	65	4	$3 \times 4 = 12$
GST107	2	56	3	$2 \times 3 = 6$

The calculation of **GPA** is as follows:

$$GPA = \frac{\sum_{i=1}^{n} TCP}{\sum_{i=1}^{n} TRCU} = \frac{(2 \times 5) + (3 \times 4) + (2 \times 3)}{2 + 3 + 2} = \frac{28}{7} = 4.00$$

where n is the number of courses, and it is the turning variable.

100 Level Second Semester Scores

Course Code	TRCU	Score	Points	ТСР
CSC102	2	68	4	$2 \times 4 = 8$
MTH112	3	26	0	$3 \times 0 = 0$
STA112	3	56	3	$3 \times 3 = 9$
PHY122	2	89	5	$2 \times 5 = 10$

$$GPA = \frac{\sum_{i=1}^{n} TCP}{\sum_{i=1}^{n} TRCU} = \frac{(2 \times 4) + (3 \times 0) + (3 \times 3) + (2 \times 5)}{2 + 3 + 3 + 2} = \frac{27}{10} = 2.70$$

While the CGPA for 100 level (both first and second semester) is calculated thus:

$$CGPA = \frac{\sum_{i=1}^{n} CCPA}{\sum_{i=1}^{n} TRCU} = \frac{TCP(100L FIRST SEM) + TCP(100L SEC SEM)}{TCRU(100L FIRST SEM) + TCRU(100L SEC SEM)} = \frac{28 + 27}{7 + 10} = \frac{55}{17} = 3.24$$

**Note:
$$CGPA \neq \frac{GPA(100L FIRST SEM) + GPA(100L SEC SEM)}{2} = \frac{4.00 + 2.70}{2} = \frac{6.70}{2} \neq 3.24$$

14.0 Departmental Issue Resolution Process

A student is expected to channel issues that affect him/her through their Course Level Coordinator or Academic Student Adviser. If the issue at stake is beyond the Coordinator or Student Adviser to handle, it shall be forwarded to the Examination Officer if it is academic related or to the Head of Department as the case may be. When it is impossible for any of the above to resolve the issue, the case will be reported to the Dean of the Faculty (Fig 1).

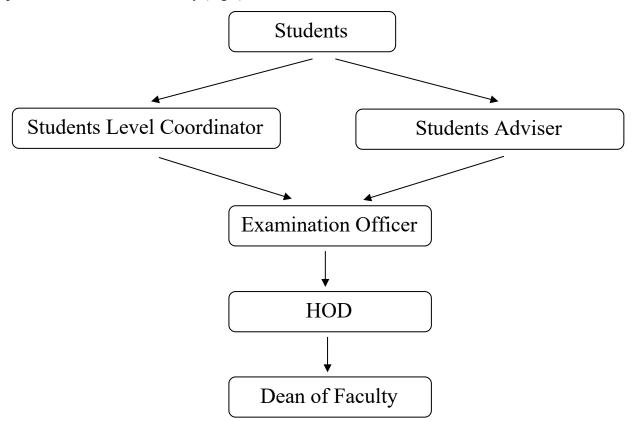


Fig 1. Hierarchy of Issue Resolution Process in the Department

15.0 Departmental Designations

Students are expected to meet their Course Level Coordinators and Departmental Student Adviser for any counseling or academic guidance. They are:

Head of Department	Prof. Francisca O. Oladipo
Examination Officer	Mr. Olalekan Ihinkanlu
Timetable Officer (Dept)	Mr. Rufai Malik Adeiza
Coordinator (100 Level)	Mrs. Temitope Oluwafemi
Coordinator (200 Level)	Mr. Abubakar Aliyu
Coordinator (300 Level)	Mr. Rufai Malik Adeiza
Coordinator (400 Level)	Dr. Taiwo Kolajo
Welfare Officer	Mr. Rufai Malik Adeiza
Research Coordinator	Dr. Emeka Ogbuju
Library Representative	Mr. Mohammed Shehu
Staff Advisers (NACOSS)	Dr. Emeka Ogbuju
Departmental Purser	Mr. Sam Ojonuba

16.0 Course Evaluation

16.1 Techniques of Students Assessment

Students should be examined by a combination of the following methods:

- a) Un-announced Quizzes
- b) Class Examinations
- c) Home-Work Assignments
- d) Mid-Semester and Final Semester Examinations.

The weights to be attached to these examinations should be determined by the Department provided that the final semester examination carried not less than 60% of the total weighting. The above methods can be carried out through any of the established techniques such as:

- a) Term Papers
- b) Oral presentation at examinations
- c) Seminars
- d) Projects
- e) Written essay or objective examinations, etc.

17.0 Illness

While on campus, a student who falls sick should seek for immediate medical attention at the University Health Service. When necessary, the University Health Service may refer serious case elsewhere for further treatment. Whenever the medical condition of a student necessitates absence from academic activities, the Head of Department should accordingly be notified in writing and upon resumption for normal academic work, appropriate medical report must be presented. Any student who falls ill during an examination should immediately seek medical attention at the University Health Service and must obtain appropriate medical report and forward it to the Department (HOD) as soon as possible. If the sick student must seek for further medical assistance outside the University Health Service, the Department (HOD) must be formally informed in writing before leaving the University or Lokoja. Outside the University Campus or Lokoja (e.g., while at home or holidays) if as a result of ill-health, a student is likely to be late for registration, the Department must be informed early enough. Upon resumption, supporting evidence(s) (e.g., medical report which must be authenticated by the University Health Services) must be presented.

18.0 Course Structure

The duration of the B.Sc. (Hons.) Computer Science programme is four years. There are two semesters of formal University Studies in each academic session. At 300 Level, a student is expected to go for a six (6) months Students Industrial Work Experience Scheme (SIWES) after completion of the first semester courses, at the end of which he/she must write, present, and defend a report on what he/she learnt in the industry. At 400 Level, each student undertakes a one-year project in any field of interest besides the usual prescribed courses. A report on the project is also to be presented and defended.

The following gives a detailed breakdown of the courses in the curriculum on a semester-by- semester basis.

Code	Title	Status	Unit	Prerequisite
CSC101	Introduction to Computer Science	Core	2	O/L
MTH111	Sets and Number System	Core	2	O/L Maths

100 Level First Semester Courses

MTH113	Differential and Integral Calculus	Core	2	O/L Maths
MTH115	Trigonometry and Co-ordinate Geometry	Core	2	O/L Maths
PHY111	General Mechanics	Core	2	O/L Physics
PHY161	General Physics Practical I	Core	1	O/L Physics
GST101	Communication in English and Use of Library	Core	2	O/L English
GST103	Nigerian Peoples and Cultures	Core	2	O/L English
GST107	Philosophy, Logic and Human Existence	Core	2	O/L
	Sub-Total		17	

CHM113	Introductory Physical Chemistry	Elective	3	O/L Chemistry
CHM161	Experimental Chemistry I	Elective	1	O/L Chemistry
PHY131	Heat & Properties of Matter	Elective	2	O/L Physics
BOT101	Plant Biology	Elective	2	O/L Biology
STA113	Probability Theory I	Elective	2	O/L Maths

Note: A minimum of three (3) units elective is required.

100 Level Second Semester Courses

Code	Title	Status	Credit Unit	Pre- requisite
CSC102	Introduction to Computer Applications	Core	2	O/L
MTH112	Algebra	Core	2	O/L Maths
MTH114	Conic Sections and Applications of Calculus	Core	2	O/L Maths
MTH116	Vectors and Dynamics	Core	2	O/L Maths
STA124	Probability Theory II	Core	3	O/L Maths
PHY122	Electricity, Magnetism and Modern Physics	Core	2	O/L Physics
PHY162	General Physics Practical II	Core	1	O/L Physics
GST102	Communication in English	Core	2	O/L English
GST104	Communication in French and Arabic	Core	1	O/L
GST110	History and Philosophy of Science	Core	1	O/L
	Sub-Total		18	

CHM124	Introductory Inorganic Chemistry	Elective	3	O/L Chem
CHM162	Experimental Chemistry II	Elective	1	O/L Chem
BIO102	General Ecology	Elective	2	O/L Bio

Note: A minimum of three (3) units elective is required.

Electives	: 	6 units 41 units
Core courses (Departmental) Core courses (General Studies)	:	25 units 10 units

100 LEVEL COURSE SUMMARY: A MINIMUM OF 41 CREDIT UNITS

200 Level First Semester Courses

Code	Title	Status	Credit	Prerequisite
			Units	
CSC203	Discrete Structures	Core	3	MTH111
CSC205	Digital Logic Design	Core	3	CSC101
CSC211	Computer Programming I	Core	2	CSC101
MTH221	Mathematical Methods I	Core	3	MTH112
PHY211	Mechanics	Core	3	-
GST205	Environmental Health	Core	1	-
	Sub-Total		15	

STA211	Probability Theory III	Elective	3	STA124
MTH213	Real Analysis I	Elective	3	MTH111 or equivalent
MTH217	Linear Algebra I	Elective	3	MTH112 or equivalent
MTH219	Numerical Analysis I	Elective	3	MTH113 or equivalent
MTH221	Number Theory	Elective	3	MTH111

Note: A minimum of three (3) units elective is required.

200 Level Second Semester Courses

Code	Course Title Stat		Credit	Prerequisi
			Units	te
CSC204	Computer Organization and Assembly	Core	3	CSC101
	Language			
CSC206	Human Computer Interaction	Core	2	CSC101
CSC208	Artificial Intelligence I	Core	3	CSC102
CSC212	Computer Programming II	Core	2	CSC101
CSC222	Computer Electronics	Core	3	CSC101
MTH224	Introduction to Numerical Analysis	Core	3	MTH111or
				113
GST202	Peace and Conflict Resolution	Core	2	-
GST204	Entrepreneurial Skills	Core	2	-
	Sub-Total		20	

CSC202	Computer Programming III	Elective	3	CSC101
MTH21	Ordinary Differential Equations	Elective	3	MTH114 or
2				equivalent
MTH21	Linear Algebra II	Elective	3	MTH112 or
8				equivalent
STA212	Probability Distribution II	Elective	3	STA112

Note: *A minimum of three (3) units elective is required.*

Core courses (Departmental) Core courses (General Studies) Electives	:	30 units 5 units 6 units
Level Total	:	41 units

200 LEVEL COURSE SUMMARY: A MINIMUM OF 40 CREDIT UNITS

300 Level First Semester Courses

Code	Course Title	Status	Credit	Prerequisite
			Units	
CSC301	Structured Programming	Core	3	CSC211
CSC303	Fundamentals of Data Structures	Core	3	-
CSC305	Compiler Construction I	Core	3	
CSC307	Database Management	Core	3	-
CSC311	Algorithm and Complexity Analysis	Core	3	CSC203
CSC315	Computer Architecture and Sequential Program	Core	3	CSC205
CSC321	System Analysis and Design	Core	3	-
	Sub-Total		21	

CSC313	Operations Research	Elective	3	-
CSC319	Information Technology Law	Elective	3	-
MTH321	Mathematical Modeling	Elective	3	MTH221
MTH329	Introduction to Operations Research	Elective	3	MTH217

Note: A three (3) units elective is required.

300 Level Second Semester Course

Code	Course Title		Status	Credit Units	Prerequisite
CSC398	SIWES Training)	(Industrial	Core	6	-

Note: Students going for SIWES must have earned 60 credit units (30 credit units for Direct Entry Students) at the end of 200 Level Second Semester.

300 LEVEL COURSE SUMMARY: A MINIMUM OF 30 CREDIT UNITS

Core courses (Departmental) Electives	:	27 units 3 units
Total	:	30 units

Code	Course Title	Status	Credit Units	Prerequisite
CSC401	Software Development and Engineering	Core	3	CSC321
CSC403	Survey and Organization of Programming Languages	Core	4	CSC301
CSC405	Operating Systems I	Core	3	-
CSC407	Machine Learning/Data Science	Core	3	CSC208
CSC409	Net-Centric Computing	Core	3	-
	Sub-Total		16	

400 Level First Semester Courses

MTH422	Optimization Theory	Elective	3	MTH329
CSC411	Introduction to Cryptography	Elective	2	-
CSC433	Computer Graphics and Visualization	Elective	2	-
CSC421	Information Technology Project	Elective	2	
	Management			
CSC441	Artificial Intelligence II	Elective	2	CSC208

Note: A minimum of two (2) units elective is required.

400 Level Second Semester Courses

Code	Course Title	Status	Credit Units	Prerequisite
CSC402	Data Communications and Networks	Core	3	CSC206
CSC404	Operating Systems II	Core	3	-
CSC412	Compiler Construction II	Core	3	CSC305
CSC400	Research Project	Core	6	-
	Sub-Total		15	

MTH446	System Theory	Elective	3	-
MTH448	Mathematical Modeling	Elective	3	MTH221 or
				MTH224
CSC406	Special Topics in Computer Science	Elective	3	-
CSC422	Computer System Performance	Elective	2	-
	Evaluation			
CSC424	Modeling and Simulation	Elective	3	-
CSC408	Expert Systems Technology	Elective	2	-
CSC432	Formal Methods in Software Engr	Elective	3	-

Note: A Minimum of four (4) units elective is required.

400 LEVEL COURSE SUMMARY: A MINIMUM OF 32 CREDIT UNITS

Core courses (Departmental) Electives	:	31 Units 6 Units
Total	:	37 Units

19.0 Course Contents And Description

	FEDERAL UNIVERSITY LO COURSE OUTLINE	KOJA
Faculty	Sciences	
Department	Computer	
Course Title	Introduction to Computer Science	
Study Year	1	
Course Code	CSC101	
Credit Hours	8	
Pre-requisite		
Mode of Assessment	Lecture, Assessment and Practical	
Assignment		20%
Test		20%
Final Examination		60%
Total		100%
Course Lecturer and	Prof. Sunday Eric Adewumi	
Instructor	Dr Frederick Duniya Basaky	
	Mr Malik A. Rufai	
	Mr Abubakar Aliyu	
	Mr Musa Kunya	
Course Description	Introducing the students to computer,	
	generations, types of computer, the ha	
Course Objectives	At the end of the study student should	be able to;
	- Reproduce the history and bac	ekground of computer,
	- The evolution and generations	s of computer
	- Identify the hardware and the	
	- Differentiate between the hard	l and the software
	- Mention the different types of	computer networks
	- List and draw the different ne	twork topologies
Learning Outcome	Students became conversant with c	omputer units, know the different
-	types of computer, could now differentiate between soft and hardware,	
	know historical background and techn	ology of computer
Detailed course	Definition and the history ar	d background of computer, The
contents	evolution and generations of co	
	Identify the hardware and the s	oftware of computer, the front and
	rear views of a computer unit, d	ifferent types connectors
	Differentiate between the hard a	and the software
	Mention the different types of the different network topologies	computer networks, List and draw
Course contents		,
	Introduction of the course and course	outlines. Definition and the history
Week1	and background of computer	summes, Definition and the history
Week 2 and 3	The evolution and generations of	of computer
	-	oftware of computer, the front and
	rear views of a computer unit, d	
Week 4	The evolution and generations of	-
	Identify the hardware and the s rear views of a computer unit, d	oftware of computer, the front and ifferent types connectors

19.1 100 Level First Semester CSC101 - Introduction to Com

19.2 100 Level Second Semester CSC102 - Introduction to Computer Applications (2 units)

CSC102 - Introduction to Computer Applications (2 units) FEDERAL UNIVERSITY LOKOJA COURSE OUTLINE		
Faculty	Sciences	
Department	Computer Science	
Course Title	Introduction to Computer Applications	
Year of Study	I	
Course Code	CSC102	
Credit Hours	2	
Contact Hours	72	
Pre-requisite(s)	Nil	
Mode of	Classroom Lectures	
Delivery	Laboratory Practical Sessions	
Mode of Assessm	lent	Weight
		%
Continuous Asses	sment	40%
Final Examination	1	60%
Total		100%
Course	Prof Francisca O. Oladipo	
Lecturers and	Mr. Malik A. Rufai	
Instructor(s)	Mrs. Linda O.Okpanachi	
Course	Mr Abdulwahab A. Jatto This course is designed to introduce students to the use of the PC	for business
	and personal purposes. Tools to be deployed in this course inclu-	
Description	of word processing software, spreadsheet applications, Windows	
	Like Operating Systems, and Graphic Tools. The course is experimental in	
	nature, so most of the learning activities will take place in the Software laboratory.	
Course	At the end of this course, students should be able to:	
Objectives	a) Understand the computer software is all about	
	b) State the basic types of computer software	
	c) Describe system software and application software	
	- Define software.	
	Categories of software.Examples	
	- Applications	
Learning	At the end of the course, students will be able to:	
Outcomes	1. Understand Operating Systems: Fundamentals Definition,	
	Functions, Features, and Examples.	
	2. Microsoft Windows Operating Environment, and Windows Accessories. Booting (Types) and Shutting Down the Computer,	
	Using the Mouse and Keyboard.	
	3. Files and Folders/Directories	
	 Computer System Protection (Virus, Trojans, and W Understand Application Software (Definition, Types) 	

	 Application Software (Microsoft Word, Micro Microsoft PowerPoint, Microsoft Access, and Publisher). 		
	 7. Effectively use a wide range of Office applications. 8. Decide on the appropriate office productivity software for a given situation 		
	situation. 9. Design and present simple documents using office productivity		
	applications. 10. Operate a variety of advanced spreadsheet, operating system and		
	word processing functions and solve a range of pro		
	office productivity applications 11. Adapt quickly to new software releases.		
Teaching and	The class will meet for two hours each week for theoretical class		
Learning	hours each week for practical/laboratory classes. The contact used for a combination of Lectures, Recitations, Tutorials and		
	Practical Sessions. Key concepts would be taught during in		
	sessions, while the Laboratory sessions will be based on		
	Software (Microsoft Word, Microsoft Excel, Microsoft Microsoft Access, and Microsoft Publisher).	PowerPoint,	
Detailed	Brief introduction to computer system. Computer softwar	· • •	
Course Content	software (system and application software: definition, tyes, e applications). Introduction to the use of the PC for business a purposes. Tools to be deployed in this course includes a vari	and personal	
	processing software, spreadsheet applications, Windows and		
	Operating Systems, and Graphic Tools. The course is experimen so most of the learning activities will take place in the Software		
Course Content			
Weeks	Detailed Course Outline	Allocated Time	
Week1	Brief introduction to computers, computer software (System	3 Hours	
	and Application)		
	• Definition		
	• Functions		
	• Types		
	• Features		
	• Examples		
	• applications		
Week2	System software: Microsoft Windows Operating	3Hours	
	Environment, and Windows Accessories. Booting (Types)		
	and Shutting Down the Computer, Using the Mouse and		
	Keyboard		
Week3	Files and Folders/Directories	12 Hours	
Week4	Computer System Protection (Virus, Trojans, and Worms)	12 Hours	
1			
	Continuous Assessment II		
Week 5,6	Continuous Assessment II Application software: Microsoft Word	12 Hours	
Week 5,6 Week 7,8,9		12 Hours 12 Hours	

Week 10	Microsoft PowerPoint	6 Hours
Week 11,12	Microsoft Access	12 Hours
After Week 12	Examination	
Recommended Reading Material 1. CSC102 Experimental Laboratory Manual		

19.3 200 Level First Semester

CSC203 - Discrete Structures (3 Units)

FEDERAL UNIVERSITY LOKOJA COURSE OUTLINE			
Faculty	Sciences		
Department	Computer Science		
Course Title	Discrete Structures		
Year of Study	II		
Course Code	CSC203		
Credit Hours	3		
Contact Hours	33		
Pre-requisite(s)	MTH111		
Mode of			
Delivery	Laboratory Practical Sessions		
Mode of Assessm	ent	Weight%	
Continuous Assess	ssment 40%		
Final Examination		60%	
Total	100%		
Course	Prof. Snday E. Adewumi		
Lecturers and	Mr. Ihinkalu Olalekan Ebenezer & Mr. Dauda Isiaka -Laboratory Instructor		
Instructor(s)			
Course	Computer Science involves the study of how computer solve problems.		
Description	Computer use discrete structures to represent and manipulates data. This implies that problems to be solved by computer are represented and resolved using the ideas of discrete structures.		
Course	This course would enable the understanding of the following:		
Objectives			

	 Apply formal logic proofs and/or informal, but rigorous, logical reasoning to real problems, such as predicting the behavior of software, analyze the time-complexity of an algorithm or solving problems such as puzzles. Demonstrate comprehension of discrete structures and their relevance within the context of computer science, in the areas of data structures and algorithms, in particular. Apply discrete structures into other computing problems such as formal specification, verification, databases, artificial intelligence, and cryptography. Demonstrate mathematical skills, analytical and critical thinking abilities. Know how to represent and deploy different discrete structures to manipulate problems (data), and communicate technical results clearly and effectively using the technical language of the field correctly. Prove computational theorems, propositional and predicate logic 	
	theorems.	
Learning	At the end of the course, students will be able to:	
Outcomes	12. From this course student will learn the fundamental algorithms used by computer programmers.	
	13. Students will need a solid background in these subjects, because	
	it is an excellent tool for improving reasoning and problem-	
	solving skills.	
	14. Concepts and notations from discrete mathematics are useful in	
	studying and describing objects and problems in all branches of computer science, such as computer algorithms, programming	
	languages, cryptography, automated theorem proving, and	
	software development.	
	15. computer implementations are tremendously significant in	
	applying ideas from discrete mathematics to real-world applications, such as in operations research.	
Teaching and	The class will meet for three hours each week. Class time will be used	
Learning	for a combination of Lectures, Seminar Presentation, Tutorials and	
	Laboratory Practical Sessions. Key concepts would be taught during	
	instructor-led sessions, while the Laboratory sessions will be based on	
	problem-solving and software modelling using Python	
Detailed Course	Review on Basic structures in discrete structure: set theory -basic	
Content	definitions, operators and operations, set theory applications -relations:	
	functions within sets, Application of relations. Boolean Algebra: - concepts, operators and operations, axioms (postulates) and theorems,	
	applications. Graph theory: -concepts and theorems, graph	
	representations, operations, applications, trees. Matrices: -concepts and	
	theorems, operators and operations, lattices. Discrete probability: -	
	concepts and theorems, operations, applications. Counting: - rules/theorems, operations, applications. Proof techniques, including	
	the structure of mathematical proofs, direct proofs, disproving by	
	counterexample, proof by contradiction. Basics of counting, including	
	counting arguments, the pigeonhole principle, permutations and	
	combinations, solving recurrence relation. Discrete probability, including finite probability space, axioms of probability, conditional	
	probability.	

Course Content Sequencing			
Weeks	Detailed Course Outline	Allocated Time	
Week1	Introduction of the course Discrete Structure	3 Hours	
	• Set Theory		
Week2,3,4	Boolean Algebra	9 Hours	
	• Graph theory		
	Matrices		
	1. Continuous Assessment I		
Week 5,6,	Probability	6 Hours	
	• Discrete probability and Conditional Probability		
	Counting Techniques		
Week7,8	Mathematical Induction	6 hours	
	Permutations and Combinations		
Week9,10,11	Functions and Mapping	9 Hours	
	• Practical sessions with Python Programming		
	2. Continuous Assessment II		
After Week 12	3. Examinations		

Recommended Reading Material

- 1. Keneth Rosen (2018). Discrete Mathematics and Its Applications. 8th ed. ISBN: 1260091996.
- 2. Susanna S. E. (2019). Discrete Mathematics with Applications. 5th ed. ISBN:1337694193.
- 3. White, R. T. (2021). Practical Discrete Mathematics. ISBN: 1838983147/
- 4. Levin, O. (2018). Discrete Mathematics: An Open Introduction. 3rd ed. ISBN: 1792601690

CSC205 – Digital Logic Design (3 Units)

FEDERAL UNIVERSITY LOKOJA		
COURSE OUTLINE		
	COURSE OUTLINE	
Faculty	Sciences	
Department	Computer Science	
Course Title	Digital Logic Design	
Year of Study	II	
Course Code	CSC205	
Credit Hours	3	
Contact Hours	36	
Pre-requisite(s)	CSC101	

Mode of	Classroom Lectures	
Delivery		
Mode of Assessme		0/
	8	%
Continuous Assess		
Final Examination	60%	
Total	100%	
Course	Mr. Ihinkalu Olalekan Ebenezer	
Lecturers and	Mr. Jatto Abdulwahab	
Instructor(s)		
Course	This is a core course in computer science that presents basic tools for the de	
Description	of digital circuits. It serves as a building block in many disciplines that utilize data of digital nature like digital control, data communication, digital computer etc.	
Course	This course would enable the understanding of the following:	
Objectives	 Perform arithmetic operations in many number systems. Manipulate Boolean algebraic structures. Simplify the Boolean expressions using Karnaugh map and Quine-McClusky (Tabulation) method. Implement the Boolean functions using gates (OR, NOT, AND, NAND, NOR, XOR etc.) Analyze and design various combinational logic circuits Understand the basic functions of flip flops. Understand the importance of state diagram representation of sequential circuits. Understand how to reduce and assign states in a sequential circuit. Analyze and design clocked sequential circuits. Able to understand and use one high-level hardware description languages (VHDL or Verilog) to design combinational or sequential circuits. 	
Learning	At the end of the course, students will be able to:	
Outcomes	 An ability to apply knowledge of mathematics, science, and engineering. An ability to design and conduct experiments, as well as to analyze and interpret data. An ability to design a system component, or process to meet desired needs within realistic constraints. An ability to identify, formulate, and solve engineering and real life problem. An ability to use the techniques, skills and modern engineering tools necessary for engineering practice. 	
Teaching and	The class will meet for three hours each week. Class time will be used for a	
Learning	combination of Lectures, Seminar Presentation, Tutorials. Key concepts we	ould
	be taught during instructor-led sessions,	
Detailed Course Content	Digital Systems and Binary Numbers: Digital systems, binary numbers, number-base conversion, octal and hexadecimal numbers, complements, signed binary numbers, binary codes, binary storage and registers, binary logic. Boolean Algebra and Logic Gates: Introduction, Basic definitions,	

Axiomatic definition of Boolean Algebra, Basic theorems and properties Boolean Algebra, Boolean functions, canonical and standard forms, ot logic operations, Digital logic gates, Integrated circuits. RTL&D	ner TL
logic operations, Digital logic gates, Integrated circuits. RTL&D	TL
	ter
Circuits, Integrated Injection Logic, Transistor-Transistor Logic, Emi	
Coupled Logic, MOS & CMOS. Gate Level Minimization: The map method	od
(Karnaugh map), Two-variable map, Three-variable map, Four-varia	ole
map, Five-variable map, product of sums simplification, Don't c	are
conditions, NAND and NOR implementation, other Two-le	
implementations, Exclusive-OR function. Combinational Log	
Introduction, Combinational circuits, Analysis procedure, Des	gn
procedure, Binary adder-subtractor, Decimal Adder, Binary multipl	er,
Magnitude Comparator, Decoders, Encoders, Multiplexers. Combination	nal
Logic: Design procedure, adders, subtractors, code conversion, analy	sis
procedure, multilevel NAND & NOR circuits, exclusive-OR & equivale	ice
functions. Binary parallel adder, decimal adder, magnitude compara	or,
decoder, multiplexer, programmable logic array. Synchronous Sequen	ial
Logic: Introduction, Sequential circuits, Storage element; Latches and F	ip-
flops, Analysis of clocked sequential circuits, State reduction	nd
assignment, Design procedure. Flip flop, triggering of flip-flop, st	ate
reduction & assignment, design procedure, design of counters, design	
state condition. Registers, Counters and the Memory Unit; Inter-registers	
transfer, shift register, conditional control statements, overflow, decima	
floating point data, non-decimal data, Modulus N counters, memor	es,
ROM, EPROM, PROM and RAM, dynamic RAM.	-

Weeks	Detailed Course Outline	Allocated Time
Week1	History and Introduction to Computing Systems.	3 Hours
Week2,3,4	Mechanical Computers, Digital versus Analog systems	9 Hours
	Organization of stored Program Digital Computer	
	• Information representation and Number systems	
	1. Continuous Assessment I	
Week5,6,7	Boolean Algebra & Switching Theory(Fundamentals	9 Hours
	on Boolean Algebra; Basic Postulates, Diagrams and	
	Theorems of Boolean Algebra, Boolean Operators.	
Week8,9	2. Seminar Presentation	6 Hours
	• Switching Functions; Switching Circuits, Physical	
	properties of Gates.	
	Combinatorial Circuits	
Week10,11,12	Analysis of sequential Circuits	9 Hours
	• Introduction to Sequential MSI's and Programmable	
	Logic Devices	
	3. Continuous Assessment II	
After Week 12	4. Examinations	
	eading Material	

- 2. C. S. French "Introduction to Computer Science" Fifth Edition
- 3. Schaum's Outline "Boolean Algebra and Switching Circuits"

4. https://www.electronics-tutorials.ws/logic/logic_1.html

CSC211: Computer Programming I (2 Units)

FEDERAL UNIVERSITY LOKOJA COURSE OUTLINE		
Faculty	Sciences	
Department	Computer Science	
Course Title	Computer Programming I	
Year of Study	II	
Course Code	CSC211	
Credit Hours	2	
Contact Hours	24	
Pre-requisite(s)	CSC101	
Mode of	Classroom Lectures	
Delivery	Laboratory Practical Sessions	
Mode of Assessme	nt	Weight%
Continuous Assess	ment	40%
Final Examination		60%
Total		100%
Course	Fati Oiza Ochepa (Mrs), Linda Ojone Okpanachi (Mrs)	
Lecturers and	Mr. Paulinus Umeh -Laboratory Instructor	
Instructor(s)		
Course	This course is intended for those with little or no programmin	g background,
Description	though prior programming experience will make it easier, and those with	
	previous experience will still learn C++ specific constructs and concepts. In	
	this course, students will learn the basics about C++ programming language	
	such as variables, data types, arrays, pointers, functions and classes etc.	
Course	This course would enable the understanding of the following:	
Objectives	1. Basic programming concepts.	
	2. Train the students in the process of creating Visual C+-	- solutions that
	include forms with controls and code that make the forms functional	
	Develop in the students, the abilities to apply, build and modify rule-	
	based systems to solve real problems,	
	3. Equip students to be able to validate input and format o	utput.
	4. Develop an algorithm to solve a given problem. The student can	
	translate an algorithm into a program that includes for	ms and Visual

	Basic code. Students can recognize and use recommended	
	programming style and technique.	
	5. Write Windows applications using forms, controls, and events.	
Learning	At the end of the course, students will be able to:	
Outcomes	Upon completion of this course, the student will be able to:	
	16. Utilize the Microsoft Visual C++ integrated development	
	environment to create Visual C++ solutions that include forms with	
	controls and code that make the forms functional. The integrated	
	debugger can be used to find syntax and run time errors; or any other	
	available editor like C Free, Dev etc.	
	17. Create projects with forms that may include labels, picture boxes,	
	textboxes, group boxes, list boxes, check boxes, and radio buttons	
	and modify applicable control properties. Event procedures can be	
	developed to allow a user to interact with the form. Students will be	
	able to create applications with multiple forms and menus.	
	18. Effectively utilize decision structures such as IfThenElse and	
	SelectCase statements, loops and nested loops, logical operators,	
	relational operators, arithmetic operators, procedures and functions.	
	19. Develop an algorithm to solve a given problem. The student can	
	translate an algorithm into a program that includes forms and Visual	
	Basic code. Students can recognize and use recommended	
	programming style and technique.	
	20. Create one and two dimensional arrays for sorting, calculating, and	
	displaying of data.	
	21. Write C++ programs using object-oriented programming	
	techniques including classes, objects, methods, instance variables,	
	composition, and inheritance, and polymorphism.	
	22. Write Windows applications using forms, controls, and events.	
Teaching and	The class will meet for two hours each week. Class time will be used for a	
Learning	combination of Lectures, Recitations, and Tutorials while Laboratory Practical	
	Sessions will be held four hours weekly, as students are divided into groups	
	because of their size. Key concepts would be taught during instructor-led	
	sessions, while the Laboratory sessions will be based on problem-solving and	
	software modelling using Microsoft Visual C++ integrated development	
	environment.	
Detailed Course	Introduction-Comparison of procedure-oriented, structure-oriented, event-	
Content	driven, and object-oriented programming paradigms, Fundamental of object	
	oriented design. Features of object-oriented programming. C++ Fundamentals-	
	Keywords, data types, standard I/O streams, function prototypes, C++	

overloo referen constru objects memoo pointe objects Polym related classes membo inherit contain databa	eements over C, default function parameters, in aded functions, reference variables comparison betwe aces. Classes-Creating new data type in C++, class declar actors and destructors, access functions, constant o s, static members, friend classes, arrays of class ob ry allocation-New and delete operators, class with point e assignment, initialization, copy constructor, passing s, advanced free store techniques, exception handling. orphism-Inheritance, Polymorphism: Operator overlo	en pointers and ration, members, bjects, member ojects. Dynamic er members, this
referen constr objects memo pointe objects Polym related classes memb inherit contain databaCourse Content Sequenci Week1DetailWeek11.•• <th>aces. Classes-Creating new data type in C++, class declar actors and destructors, access functions, constant o s, static members, friend classes, arrays of class of ry allocation-New and delete operators, class with point er assignment, initialization, copy constructor, passing s, advanced free store techniques, exception handling. orphism-Inheritance, Polymorphism: Operator overlo</th> <th>ation, members, bjects, member ojects. Dynamic er members, this</th>	aces. Classes-Creating new data type in C++, class declar actors and destructors, access functions, constant o s, static members, friend classes, arrays of class of ry allocation-New and delete operators, class with point er assignment, initialization, copy constructor, passing s, advanced free store techniques, exception handling. orphism-Inheritance, Polymorphism: Operator overlo	ation, members, bjects, member ojects. Dynamic er members, this
constructionobjectsmemorypointeryobjectsPolymerelatedclassesmembryinheritecontaindatabasCourse Content SequenciWeeksDetail <th>actors and destructors, access functions, constant o s, static members, friend classes, arrays of class of ry allocation-New and delete operators, class with point assignment, initialization, copy constructor, passing s, advanced free store techniques, exception handling. orphism-Inheritance, Polymorphism: Operator overlo</th> <th>bjects, member bjects. Dynamic er members, this</th>	actors and destructors, access functions, constant o s, static members, friend classes, arrays of class of ry allocation-New and delete operators, class with point assignment, initialization, copy constructor, passing s, advanced free store techniques, exception handling. orphism-Inheritance, Polymorphism: Operator overlo	bjects, member bjects. Dynamic er members, this
object: memo pointe object: Polym related classes memb inherit contain databaCourse Content SequenciWeeksDetailWeek11.••	s, static members, friend classes, arrays of class of ry allocation-New and delete operators, class with point assignment, initialization, copy constructor, passing a, advanced free store techniques, exception handling. orphism-Inheritance, Polymorphism: Operator overlo	ojects. Dynamic er members, this
memory pointer objects Polym related classes membrinherit contain databaCourse Content Sequenci WeeksDetailWeek11.••••••••••••	ry allocation-New and delete operators, class with point assignment, initialization, copy constructor, passing a advanced free store techniques, exception handling. orphism-Inheritance, Polymorphism: Operator overlo	er members, this
pointer objecta Polym related classes membrinherit contain databaCourse Content SequenciaWeeksDetailWeek11.•••	assignment, initialization, copy constructor, passing , advanced free store techniques, exception handling. orphism-Inheritance, Polymorphism: Operator overlo	ŕ
Veek1 1. Objects Polym related classes memb inherit contain databa Course Content Sequenci Detail Week1 1. • • • • • •	s, advanced free store techniques, exception handling. orphism-Inheritance, Polymorphism: Operator overlo	g and returning
Polym related classes memb inherit contain databaCourse Content SequenciWeeksDetailWeek11.••••••••	orphism-Inheritance, Polymorphism: Operator overlo	
related classes memb inherit contain databa Course Content Sequenci Weeks Detail Week1 1. • • •		Inheritance and
classes memb inherit contain databaCourse Content SequenciWeeksDetailWeek11.•••••••		ading, handling
membinheritcontaindatabaCourse Content SequenciWeeksDetailWeek11.••••••	types in C++, derived class, conversion between ba	ase and derived
inherit contain databa Course Content Sequenci Weeks Detail Week1 1. • •	, virtual functions, dynamic binding, pure virtual func	ctions, protected
contain databaCourse Content SequenciWeeksDetailWeek11.••••••••	ers, public and private base classes, new, delete operate	ors overloading,
databa Course Content Sequenci Weeks Detail Week1 1.	ance applications. Advanced C++ concepts-File hand	ling, templates,
Course Content Sequenci Weeks Detail Week1 1. • • • •	container classes, class library, stack, queue and linked list applications, simple	
Weeks Detail Week1 1.	se applications.	
Week1 1.	ng	
•	ed Course Outline	Allocated
•		Time
• • • • • • • • •	Introduction	4 Hours
• • • • • • •	Comparison of procedure-oriented and structured	
• • • • • • •	oriented programming.	
• Week2,3,4 2. • •	Comparison of event-driven, and object-oriented	
• Week2,3,4 2. • •	programming paradigms.	
Week2,3,4 2.	Fundamental of object oriented design.	
Week2,3,4 2.	i unumentar er eegeet errented design.	
•	Features of object-oriented programming.	15 Hours
•	C++ Fundamentals-Keywords.	
•	Data types	
•	Standard I/O streams.	
•		
	Function prototypes.	
	Function prototypes. C++ enhancements over C.	
	Function prototypes. C++ enhancements over C. Default function parameters.	1
	Function prototypes. C++ enhancements over C. Default function parameters. Inline functions, overloaded functions and reference.	
	Function prototypes. C++ enhancements over C. Default function parameters.	
•	Function prototypes.	

Week 5,6	3. Classes	
	 Creating new data type in C++, class declaration, members, constructors and destructors, access functions, constant objects, member objects, static 	10 Hours
	members, friend classes, arrays of class objects.	
	4. Dynamic memory allocation	
	• New and delete operators.	
	• Class with pointer members.	
	• This pointer assignment.	
	• Initialization, copy constructor, passing and returning	
	objects.	
	• Advanced free store techniques, exception handling.	
	Continuous Assessment I	
Week7,8	5. Inheritance and Polymorphism	10 hours
	Inheritance, Polymorphism	
	• Operator overloading, handling related types in C++.	
	• Derived class, conversion between base and derived	
	classes.	

Week9,10,11,12	6. Advanced C++ concepts-	20 Hours
	File handling, templates, container classes, class	
	library, stack, queue and linked list applications,	
	simple database applications.	
	7. Problems and Solutions with Functions	
	• Focusing on functions created by the programmer	
	• Appreciating the difference between the interface	
	and the implementation	
	• Writing and compiling C++ programs that include	
	user-defined functions, provide flow control, and pass	
	data by value and by reference	
	8. Control Structures	
	• Scope of an identifier, lifetime of a variable, and	
	value-returning functions	
	•Completing the presentation of the C++control	
	structures : switch-case, for loop, break, and continue	
	• Collaborating, modifying, and compiling a C++	
	program	
	• Modifying C++ source code to reflect good practice	
	in variable scope	
	9. Continuous Assessment II	
After Week 12	10. Examinations	
Recommended Rea	ading Material	<u> </u>
	on. (2003). C++ Pocket Reference. O'Reilly Media; 1st edition, I	SBN-13: 978-
 Stanley Lippman, Josée Lajoie, Barbara Moo. (2012). C++ Primer. Addison-Wesley 		
	l; 5th edition, ISBN-13: 978-0321714114	
3. Scott Meyers. (2014). Effective Modern C++: 42 Specific Ways to Improve Your Use of		
C++11 and C++14. O'Reilly Media, Incorporated; 1st edition, ISBN-13 : 978-1491903995		

4. Dale, N. et al (2002). Programming and Problem Solving with C++ (3rd ed). Jones and Bartlett Publishers. ISBN: 0763721034

CSC202 - Progra	amming in Python (3 units)	
	FEDERAL UNIVERSITY LOKOJA COURSE OUTLINE	
Faculty	Sciences	
Department	Computer Science	
Course Title	Programming in python	
Year of Study	II	
Course Code	CSC202	
Credit Hours	3	
Contact Hours	36	
Pre-requisite(s)	CSC 101	
Mode of	Classroom Lectures	
Delivery	Laboratory Practical Sessions	
Mode of Assessm	ent	Weight%
Continuous Asses	sment	40%
Final Examination		
Total		100%
Course	Mrs. Oluwafemi Temitope	10070
Lecturers and	Mr. Musa Kunya	
Instructor(s)		
Course	This course is designed to introduce the concept of O	OP and general
Description	programming to non-Computer Science students.	
Course	This course would enable the understanding of the following:	
Objectives	1. To understand the advantage of python as a programming language.	
	2. To identify the various data types in Python	
	3. To learn how to use the various control statements in py	rthon.
	4. To learn how to handle exceptions in python.	
	5. To understand OOP concepts using python.	
	6. To learn how to design simple applications in python	
Learning	At the end of the course, students will be able to:	
Outcomes	1. Develop a greater understanding of the issues involved	in programming
	language design and implementation	1 68
	2. Develop an in-depth understanding of functional, log	gic, and object-
	oriented programming paradigms using Python	

CSC202 D Duth 12 ite) .

	3. Understand design/implementation issues involved	with variable
	allocation and binding, control flow, types, subrout	ines, parameter
	passing	
	4. Introduce the underlining concept of the compilation pro	ocess.
Teaching and	Classes should be for 3hrs weekly.	
Learning	Introductory concepts are taught in the classroom	
	Laboratory Sessions: Problem-solving learning approach will	be emphasized
	through hands-on practical sessions which will be tailored towar	ds solving real-
	life problems using any of the Python IDEs (PyCharm, Anacond	-
	F	,,
Detailed	Python Basics, definition of programming terms, data types -N	umerical types
Course Content	Containers, Assignment operator, Control Flow, if/elif/e	• •
course content	while/break/continue, Conditional Expressions, Advanced iter	-
	functions -Function definition, Return statement, Parameters, Pa	-
	Global variables, local variable. Docstrings, Comments, Good	
	practice. Methods. Reusing code: scripts and modules, importing	
	modules, Creating modules, '' and module loading. In	
	-Iterating over a file, operating system functionality: high-level	-
	Pattern matching on files. Exception handling in Python -Exception	-
	exceptions, Raising exceptions. Object-oriented programming (OOP) concepts.	
Course Content	Sequencing	
Weeks	Detailed Course Outline	Allocated
		Time
Week1	11. Introduction	3 Hours
VV CCK1		5 110015
	Definition of terms	
	History of python	
	Python Applications	
Week2-3	12. Setting up python interpreter	6 Hours
	13. Data Types in Python	
1		

Week4-6	14. Control flow	9 Hours
	• Simple if	
	• if-else	
	• nested if	
	• if-elif-else	
	• for loop	
	• while loop	
	15. Functions in python	
	16. Continuous Assessment I	
Week7-8	17. Files I/O	6 hours
	18. Exception handling	
Week9,10,11,12	19. Variables	12 Hours
	20. Comments	
	21. OOP in python	
	22. Continuous Assessment II	
After Week 12	23. Examinations	

- 1. Mark Summerfield. (2010). Programming in Python 3: A Complete Introduction to the Python Language, Second Edition. ISBN 978-0-321-68056-3
- 2. Brian Heinold. (2012). A practical introduction to python programming. Department of Mathematics and Computer science, Mount St. Mary's University, Maryland, USA.

CSC204 – Computer Organisation and Assembly Language (3 Units)

FEDERAL UNIVERSITY LOKOJA COURSE OUTLINE	
Faculty	Sciences
Department	Computer Science
Course Title	Computer Organization and Assembly Language
Year of	3
Study	
Course Code	CSC204
Credit Hours	3
Contact	42
Hours	
Pre-	CSC101
requisite(s)	
Mode of	Classroom Lectures and Laboratory Practical
Delivery	

Mode of Asses	sment Weight%
Presentation	20%
Continuous Assessment 20%	
Final Examinat	ion 60%
Total	100%
Course	Mr. Muhammad Ahmad Shehu
Lecturers	
and	
Instructor(s)	
Course	Introduce learners to how computers are organized and programmed at different
Description	abstraction levels and covers a wide range of topics in both computer hardware
	organization and programming using the assembly language paradigm.
Course	This course would enable the understanding of the following:
Objectives	1. Identify the relationships between a hardware specification and the
	associated instruction set.
	2. Identify the major components of CISC and RISC architectures, and
	explain their purposes and interactions.
	3. Simulate the internal representation of data, and show how data is stored
	and accessed in memory
	4. Demonstrate the Instruction Execution Cycle for the intel x86
	5. Differentiate between high-level, assembly, and machine languages and
	write well-modularized computer programs in an assembly language,
	implementing decision, repetition, and procedures.
	6. Use a debugger, and explain register contents
	7. Demonstrate the use of special purpose registers, and show how the system
	stack is used for procedure calls and parameter passing.
	8. Explain various mechanisms for implementing parallelism in
	hardware/software
Learning	At the end of the course, students will be able to:
Outcomes	23. Understand why Computer organization and Assembly language
	programming is an important area in Computer science
	24. Understand the flow of interaction between computer and the user
	25. Understand computer system components relation towards solving user
	problem
	26. Understand assembly language programming
Teaching	The class will meet for three hours each week. Class time will be used for a
and	combination of Lectures, Recitations, Tutorials and Practical Sessions.
Learning	

Detailed	Introduction: Data representation, and number bases, Fixed and Floating point	
Course	systems, Boolean algebra - Manipulation and minimization of completely and	
Content	incompletely specified Boolean functions. Physical properties of gates: fan-in, fan-	
	out, propagation delay, timing diagrams and tri-state drivers. Combinational circuit	
	analysis and design, basic, flip-flop, clocking and timing diagrams Registers,	
	counters, RAMs, ROMs, PLAs, PLDs, and FPGAs. Switching theory. Internal	
	representation of data, instructions, and addresses. Registers. CISC and RISC	
	architectures. Instruction set, Micro-programs (systems of Micro-operations).	
	Instruction Execution. Procedure call and return. Write well-modularized computer	
	programs in Assembly Language. The relationships between H/L languages and	
	the Computer Architecture that underlies their implementation: basic machine	
	architecture assembles specification and translation of Programming Language	
	Block. Implementing decision, repetition, and procedures. Debugging assembly	
	language using a debugger. Editors, assemblers and linkers. Parallelism in	
	hardware/software. Structured Languages, parameter passing mechanisms.	
Course Conter	nt Sequencing	

Weeks	Detailed Course Outline	Allocated Time
Week1	Introduction: Data representation, and number bases, Fixed and	3 Hours
	Floating point systems	
Week2, 3 and	Physical properties of gates: fan-in, fan-out, propagation delay,	9 Hours
4	timing diagrams and tri-state drivers. Combinational circuit	
	analysis and design, basic, flip-flop, clocking and timing diagrams	
	Registers, counters, RAMs, ROMs, PLAs, PLDs, and FPGAs	
Week5, 6 and	Switching theory. Internal representation of data, instructions, and	9 Hours
7	addresses. Registers. CISC and RISC architectures. Instruction set,	
	Micro-programs (systems of Micro-operations). Instruction	
	Execution. Procedure call and return.	
Week8 and 9	Write well-modularized computer programs in Assembly	6 hours
	Language.	
Week10, 11	The relationships between H/L languages and the Computer	9 Hours
and 12	Architecture that underlies their implementation: basic machine	
	architecture assembles specification and translation of	
	Programming Language Block. Implementing decision, repetition,	
	and procedures	
Week13 and	Debugging assembly language using a debugger. Editors,	6 Hours
14	assemblers and linkers. Parallelism in hardware/software.	
	Structured Languages, parameter passing mechanisms.	

Recommended Reading Material

- 1. Carl Hammacher,"Computer Organization, "Fifth Edition, McGrawHill International Edition,2002
- 2. P.Pal Chaudhuri,"Computer Organization and Design",2nd Edition, PHI, 2003
- William Stallings, "Computer organization and Architecture-Designing for Performance PHI, 2004
- Kann, Charles W., "Introduction To MIPS Assembly Language Programming" (2015). Gettysburg College Open Educational Resources.
- Assembly Language for Intel-Based Computers, 5th Edition, by Kip Irvine, Prentice-Hall, 2006 ,, http://www.asmirvine.com

CSC206 - Human Computer Interaction (2 Units)

FEDERAL UNIVERSITY LOKOJA COURSE OUTLINE				
Faculty	Sciences			
Department	Computer Science			
Course Title	Human Computer Interaction [HCI]			
Year of Study	П			
Course Code	CSC206			
Credit Hours	2			
Contact Hours	24			
Pre-requisite(s)	CSC101			
Mode of Delivery	Classroom Lectures Laboratory Practical Sessions			
Mode of Assessmen	Mode of Assessment Weight%			
Continuous Assessm	essment 40%			
Final Examination	ion 60%			
Total	tal 100%			
Course Lecturers and Instructor(s)	Mr. Ihinkalu Olalekan Ebenezer Mr. Dauda Isiaka -Laboratory Instructor			
Course	Human-computer Interaction (HCI) is the study of interaction between people			
Description	(users) and computers. Interaction between users and computers occurs at the			
	user interface which includes both software and hardware.			
Course	This course would enable the understanding of the following:			
Objectives	 The concept of design of Usable and Functional interfaces that will enhance greatly, the interaction between Humans and Computers. The abilities to develop/design useful interfaces, software and computer based systems 			

9. Conduct user studies using common HCI methods, including observation, participatory design, and interviews. 10. Communicate findings through written reports and common HC summations, including personas and scenarios. 11. Design and conduct usability tests for a product or service. 12. Create, justify, and critique interface designs by referencing design principles, design patterns, and theoretical frameworks. 13. Create prototypes that demonstrate the interactivity of user interfaces web applications and other interactive systems. 14. Create design documents, such as wireframes, user flow models, and site maps. 15. Implement interactive interfaces in Python Programming environmen vite maps. 16. Outcomes 20. Conduct user students will be able to: 21. Expose the students to the concept of design of Usable an Functional interfaces that will enhance greatly, the interaction between Humans and Computers. 28. Equip students with abilities to develop/design useful interfaces software and computer based systems 29. Conduct user studies using common HCI methods, including observation, participatory design, and interviews. 30. Communicate findings through written reports and common HC estimations, including personas and scenarios. 31. Design and conduct usability tests for a product or service. 32. Create prototypes that demonstrate the interactivity of use interfaces, web applications and other interactive systems. 33. Create prototypes that demonstrate the interactivity of use interfac
Outcomes 27. Expose the students to the concept of design of Usable and Functional interfaces that will enhance greatly, the interaction between Humans and Computers. 28. Equip students with abilities to develop/design useful interfaces software and computer based systems 29. Conduct user studies using common HCI methods, including observation, participatory design, and interviews. 30. Communicate findings through written reports and common HCI summations, including personas and scenarios. 31. Design and conduct usability tests for a product or service. 32. Create, justify, and critique interface designs by referencing design principles, design patterns, and theoretical frameworks. 33. Create prototypes that demonstrate the interactivity of use interfaces, web applications and other interactive systems. 34. Create design documents, such as wireframes, user flow models and site maps. 35. Implement interactive interfaces in Python Programming environment Teaching and The class will meet for two hours each week. Class time will be used for a combination of Lectures, Seminar Presentation, Tutorials and Laboratory Practical Sessions. Key concepts would be taught during instructor-lect sessions, while the Laboratory sessions will be based on problem-solving and software modelling using Python Detailed Course Content Introduction and Course Overview: Definition of Human Compute Interaction, The goals of HC Studies: Interaction technique, Interaction styles, Paradigms and History Paradigms of interaction, Basic Definitions and Terminologies. Basic components of human computer interaction. The Interaction Models Ergonomics, Common Architectures for design of HCI systems, Unimodal Systems,
Functional interfaces that will enhance greatly, the interaction between Humans and Computers. 28. Equip students with abilities to develop/design useful interfaces software and computer based systems 29. Conduct user studies using common HCI methods, including observation, participatory design, and interviews. 30. Communicate findings through written reports and common HC summations, including personas and scenarios. 31. Design and conduct usability tests for a product or service. 32. Create, justify, and critique interface designs by referencing design principles, design patterns, and theoretical frameworks. 33. Create prototypes that demonstrate the interactivity of use interfaces, web applications and other interactive systems. 34. Create design documents, such as wireframes, user flow models and site maps. 35. Implement interactive interfaces in Python Programming environment Teaching and The class will meet for two hours each week. Class time will be used for a combination of Lectures, Seminar Presentation, Tutorials and Laboratory Practical Sessions. Key concepts would be taught during instructor-leasessions, while the Laboratory sessions will be based on problem-solving and software modelling using Python Detailed Course Content Introduction and Course Overview: Definition of Human Computer Interaction, The goals of HC Studies: Interaction technique, Interaction styles, Paradigms and History Paradigms of interaction, Basic Definitions and Terminologies. Basis components of human computer interaction. The Interaction Models Ergonomics, Common Interaction styles, Context: Social and Organisational Common Architectures for des
Learningcombination of Lectures, Seminar Presentation, Tutorials and Laboratory Practical Sessions. Key concepts would be taught during instructor-lea sessions, while the Laboratory sessions will be based on problem-solving and software modelling using PythonDetailed Course ContentIntroduction and Course Overview: Definition of Human Computer Interaction, Overview of Human Computer Interaction, The goals of HC Studies: Interaction technique, Interaction styles, Paradigms and History Paradigms of interaction, Basic Definitions and Terminologies. Basic components of human computer interaction. The Interaction Models Ergonomics, Common Interaction styles, Context: Social and Organisational Common Architectures for design of HCI systems, Unimodal Systems, Visual
Practical Sessions. Key concepts would be taught during instructor-lead sessions, while the Laboratory sessions will be based on problem-solving and software modelling using PythonDetailed Course ContentIntroduction and Course Overview: Definition of Human Compute Interaction, Overview of Human Computer Interaction, The goals of HC Studies: Interaction technique, Interaction styles, Paradigms and History Paradigms of interaction, Basic Definitions and Terminologies. Basic components of human computer interaction. The Interaction Models Ergonomics, Common Interaction styles, Context: Social and Organisational Common Architectures for design of HCI systems, Unimodal Systems, Visual
Detailed CourseIntroduction and Course Overview: Definition of Human Compute Interaction, Overview of Human Computer Interaction, The goals of HC Studies: Interaction technique, Interaction styles, Paradigms and History Paradigms of interaction, Basic Definitions and Terminologies. Basic components of human computer interaction. The Interaction Models Ergonomics, Common Interaction styles, Context: Social and Organisational Common Architectures for design of HCI systems, Unimodal Systems, Visual
Software modelling using PythonDetailed CourseIntroduction and Course Overview: Definition of Human Compute Interaction, Overview of Human Computer Interaction, The goals of HC Studies: Interaction technique, Interaction styles, Paradigms and History Paradigms of interaction, Basic Definitions and Terminologies. Basic components of human computer interaction. The Interaction Models Ergonomics, Common Interaction styles, Context: Social and Organisational Common Architectures for design of HCI systems, Unimodal Systems, Visual
Detailed CourseIntroduction and Course Overview: Definition of Human Compute Interaction, Overview of Human Computer Interaction, The goals of HC Studies: Interaction technique, Interaction styles, Paradigms and History Paradigms of interaction, Basic Definitions and Terminologies. Basic components of human computer interaction. The Interaction Models Ergonomics, Common Interaction styles, Context: Social and Organisational Common Architectures for design of HCI systems, Unimodal Systems, Visual
Content Interaction, Overview of Human Computer Interaction, The goals of HC Studies: Interaction technique, Interaction styles, Paradigms and History Paradigms of interaction, Basic Definitions and Terminologies. Basic components of human computer interaction. The Interaction Models Ergonomics, Common Interaction styles, Context: Social and Organisational Common Architectures for design of HCI systems, Unimodal Systems, Visual
Models, User Activity levels, Physical levels, Cognitive levels, Affective levels, Design Techniques-Task Analysis, Prototyping, User Testing Evaluation Methods, Cognitive Walkthrough, Heuristic Evaluation, Review based evaluation, Evaluating through user Participation, Design guidelines rules and principles, Participatory design. Responsible Research, Design thinking, User Experience (Ux) Design: tools for Ux –Journey Maps, Stor Boards, Wire Mesh, etc.Course Content Sequencing

Weeks	Detailed Course Outline	Allocated Time
Week1	Introduction and Course Overview: Definition of Human Computer Interaction, Overview of Human Computer Interaction	2 Hours
Week2,3,4	 The goals of HCI: Interaction technique, Interaction styles, Paradigms and History, Paradigms of interaction, Basic Definitions and Terminologies. Continuous Assessment I 	6 Hours
Week5,6	 Basic components of Human Computer Interaction. Cognitive Models Design Process 	4 Hours
Week7,8	 Interaction Design Basics Software Process Sensors mechanism 2. Seminar Presentation On each Sub – Topics of HCI, the students from the beginning of the semester will be shared in groups to present seminar topics and graded appropriately according to their group performance. 	4 hours
Week9,10,11,12	 Universal Design Implementation Support/Tools Introduction to Python Programming 3. Continuous Assessment II 	8 Hours
After Week 12	4. Examinations	

Recommended Reading Material

- 1. Dix, A., Finlay, J., Abowd, G.D., & Beale, R. (2004). Human computer interaction (3rd ed.). Prentice Hall. ISBN 0-13-046109-1.
- 2. You can find all of the resources related to this book online from the book's website at http://www.hcibook.com/e3/plain/about/book/. This is currently the major textbook used for teaching undergraduate HCI courses.
- 3. Preece, J., Rogers, Y., & Sharp, H. (2015). Interaction design: Beyond human-computer interaction (4th ed.) John Wiley & Sons Ltd. ISBN 978-1-119-02075-2.
- 4. You can find all of the resources related to this book online from the book's website at http://www.id-book.com/index.php.
- 5. Brad A. Myers. "A Brief History of Human Computer Interaction Technology." ACM interactions. Vol. 5, no. 2, March, 1998. pp. 44-54.

6. Hewett, Baecker etc., ACM SIGCHI Curricula for Human-Computer Interaction, http://old.sigchi.org/cdg/cdg2.html

	FEDERAL UNIVERSITY LOKOJA		
	COURSE OUTLINE		
Faculty	Sciences		
Department	Computer Science		
Course Title	Introduction to Artificial Intelligence		
Year of Study	IV		
Course Code	CSC208		
Credit Hours	3		
Contact Hours	36		
Pre-requisite(s)	CSC 102		
Mode of	Classroom Lectures		
Delivery	Laboratory Practical Sessions		
Mode of Assessme	ent	Weight%	
Continuous Assessment 40%			
Final Examination 60%			
Total	l 100%		
Course	Fati Oiza Ochepa (Mrs)		
Lecturers and	Mr. Paulinus Umeh -Laboratory Instructor		
Instructor(s)			
Course	In this course, the concepts, techniques, applications, and theor	ies of Artificial	
Description	Intelligence will be examined. Given the broad range of topics addressed by		
	the AI field, topics for discussion must, necessarily, be limited. Therefore, this		
	course will focus on issues of search, knowledge representation, reasoning,		
	decision making, and learning from the perspective of an intelligent agent.		
Course	This course would enable students have understanding of the following:		
Objectives	1. Provide students with knowledge of the history and revolution of		
	artificial intelligence		
	 Provide students with the understanding of the capabilities and the 		
	AI technologies.		
	 Train the students in the process of administering search techniques 		
		-	
	4. Inculcate in the students, the ability to design an application artificial intelligence		

	5. Formalize and implement constraints in search problems	
	 Explore the concepts of planning, Producer -Consumer problems. 	
Learning	At the end of the course, students will be able to:	
Outcomes	36. To Analyse and apply search techniques;	
	37. To Analyse and apply adversarial search techniques;	
	38. Identify constraint satisfaction problems;	
	 Describe, analyse and apply techniques for constraint satisfaction problems; 	
	40. Describe and explain learning algorithms;	
	41. Design an application of artificial intelligence (AI); and	
	42. Write and present a demonstration of and a technical paper about	
	the AI system designed.	
	43. Demonstrate working knowledge in a chosen AI language.	
	44. Represent knowledge in different knowledge representation	
	patterns in Artificial Intelligence such as Frames and Pillars,	
	semantic network, predicate logic/calculus, etc.	
	45. Describe and give examples of Producer -Consumer problems	
Teaching and	The class will meet for three hours each week. Class time will be used for a	
Learning	combination of Lectures, Tutorials and Laboratory Practical Sessions. Key	
	concepts would be taught during instructor-led sessions, while the Laboratory	
	sessions be used to demonstrate working knowledge using Python	
Detailed Course	Introduction to AI: History of AI, perspectives – philosophical, mathematical,	
Content	psychological, etc., AI framework, Ai and associated technology, thinking vs.	
	acting, humanly vs. rationally, knowledge of the Turing test and "Chinese	
	Room". Intelligent Agents: Agents and environments, rationality, PEAS,	
	environment and agent types. Search and constraint satisfaction: Formulation	
	of problem spaces, knowledge of brute-force search methods (breadth-first,	
	depth-first, iterative deepening), informed search methods (best first, A*),	
	heuristics and admissibility, formulation and solution of constraint satisfaction	
	problems, experience with adversarial search (minimax and alpha-beta	
	pruning) Advanced search: Knowledge and experience with genetic	
	algorithms, local search. Knowledge representation and reasoning: Frames,	
	scripts, conceptual graphs, and conceptual dependency, Logical agents,	
	propositional and first order logic, inference in first order logic (forward and	
	backward chaining, resolution, theorem proving). Reasoning under	
	uncertainty: Probabilistic reasoning, understanding of Bayesian networks and	
	complexity of inference, temporal reasoning (smoothing, filtering and	
	prediction), certainty factor. Planning: Definition and examples of Producer -	
	Consumer problems-synchronous section-message sending by blocking or	

Course Conten		
Weeks	Detailed Course Outline	Allocated Time
Week1	Introduction to AI	3 Hours
	History of AI	
	• Perspectives – philosophical, mathematical,	
	psychological, etc.	
	AI framework AI and associated technology	
	AI and associated technologyThinking vs. acting, humanly vs. rationally.	
	Knowledge of the Turing test and "Chinese Room".	
		(H
Week2,3	Intelligent Agents	6 Hours
	Agents and environmentsRationality.	
	PEAS	
	• Environment and agent types.	
Week4,5,6	Search and Constraint Satisfaction	9 Hours
	• Formulation of problem spaces	
	• Knowledge of brute-force search methods (breadth-	
	first, depth-first, iterative deepening).	
	 Informed search methods (best first, A*) 	
	• Heuristics and admissibility	
	• Formulation and solution of constraint satisfaction	
	problems.	
	• Experience with adversarial search (minimax and	
	alpha-beta pruning).	
	Continuous Assessment I	
Week7,8	Advanced search.	6 Hours
,-		
	• Knowledge representation and reasoning: Frames,	
	scripts, conceptual graphs, and conceptual	
	dependency.	
	• Logical agents, propositional and first order logic,	
	inference in first order logic (forward and backward	
	chaining, resolution, theorem proving).	

Week9,10	Reasoning under uncertainty	6 Hours	
	• Probabilistic reasoning,		
	• Understanding of Bayesian networks and complexity		
	of inference, temporal reasoning (smoothing,		
	filtering and prediction)		
	• Certainty factor.		
	Continuous Assessment II		
Week 11,1	Planning	6 Hours	
	 Definition and examples of Producer-Consumer problems 		
	Synchronous section-message sending by blocking or		
	non-blocking-send/receive		
	CPU Scheduling-microprocessor scheduling.		
After Wee	2 Examinations		
Recommended Reading Material			
 Negnevitsky, M. (2005). Artificial Intelligence: A Guide to Intelligent Systems. Pearson Education Limited, Edinburgh Gate Harlow, Essex, England. 			
2. Russell S. J. and Norvig Peter. (1995). Artificial Intelligence A Modern Approach. Prentice			
Hall, Englewood Cliffs, NJ. Hopfield.			
 Nilsson, N.J.: "Artificial Intelligence, a new synthesis", Ed. Morgan Kaufmann Publishers, 1998 			
4. Bishop C.M.(2006) . Pattern Recognition and Machine Learning. Springer.			
	n S. (1999). Neural Networks: A Comprehensive Foundation. S ce-Hall.	egunda edición.	
	A.M. Turing. (1950). "Computing machinery and intelligence" Mind, Vol. 59, No. 236, pp. 433-460. http://www.jstor.org/pss/2251299		

CSC 212 - Computer Programming II (2 Units)

FEDERAL UNIVERSITY LOKOJA COURSE OUTLINE		
Faculty	Sciences	
Department	Computer Science	
Course Title	Computer Programming II	
Year of Study	II	
Course Code	CSC	
Credit Hours	2	
Contact Hours	28	
Pre-requisite(s)	CSC101	

Mode of	Classroom Lectures		
Delivery	Laboratory Practical Sessions		
- · · - J			
Mode of Assessm	lent	Weight%	
Continuous Assessment 40%			
Final Examination			
Total		100%	
Course	Abubakan Aliyu and Abdubuahah A Jattau	10070	
Lecturers and	Abubakar Aliyu and Abdulwahab A. Jattau		
Instructor(s)			
Course	This course introduces computer programming using JAV	A programming	
Description	language with object-oriented programming principles. Emplevent-driven programming methods, including creating a		
	objects, classes, and using object-oriented tools such as the cla		
	course will prepare the students to all object-oriented progra		
	future.	mining course m	
	Tuture.		
Course	At the end of the course, students will be able to:		
Objectives			
Objectives			
	b) explain the concept of problem solvingc) State the categories of various programming language		
	d) Explain the evaluation of major programming languagee) Design, create, build, and debug Java applications and		
		i appiets.	
		alanmant	
Laguning	g) Explain variables and data types used in program development.		
Learning Outcomes	Upon completion of this course, the student will be able to: a) Understand the basic concept of computer system		
Outcomes	a) Understand the basic concept of computer systemb) Understand the concept of problem solving (apply algorithmic think)		
	b) Understand the concept of problem solving (apply algorithmic thinking to solve programming problems)		
	c) Outline the categories of various programming langua	anes	
	d) Explain the evaluation of major programming language		
	e) Explain the evaluation of major programming languagese) Explain the historical development of Java Programming language		
	f) Explain the historical development of Java Programming languagef) Design, create, build, and debug Java applications and applets.		
	g) Implement syntax rules in Java programs.	appiets.	
	h) Explain variables and data types used in program dev	elonment	
	i) Apply arithmetic operations for displaying numeric o		
	j) Write and apply decision structures for determ	·	
	operations.		
	k) Write and apply loop structures to perform repetitive	tasks.	
	1) Write user-defined methods.		
	m) Identify and implement arrays, array lists, and multidin	nensional arrays	
	n) Write Java programs using object-oriented program	•	
	including classes, objects, methods, instance variable		
	inheritance, and polymorphism.	,	
	o) Write programs using graphical user interface (GUI)	components and	
	Java's Event Handling Model.	- sing one no und	
	p) Develop custom classes using encapsulation, pol	vmorphism and	
	abstraction.	,, und	
Teaching and	The class will meet for two hours each week. Class time w	ill be used for a	
Learning	combination of Lectures, Recitations, Tutorials and Laboratory Practical		
	Sessions. Key concepts would be taught during instructor-led sessions, while		
	the Laboratory sessions will be based on problem-solving and software		
	development using Java programming language		
Detailed	Overview of computer system. Concept of problem so	lving (annlying	
Course Content	algorithmic thinking to solve programming problems). Cate		
Course Content			
	programming languages. Evaluation of major programi	ning languages	

	Historical development of Java Programming language, Feature Java works, Types of Java Programs, Edit, compile, and run Ja- and applets. Variables, data types, and expressions- Identifier variables, constants (final) and references, Primitive data typ Operators, Assignment Operators, Relational and Logical Oper control flow-Sequence structure, Selection structure, Repetition a (Sequence) structure. Methods - Java API and Package/Library f defined methods, Scope and duration, Local and Field variables, Pass-by-reference, Recursion, Overloading. Arrays- Declaration passing arrays to methods, sorting, searching Multiple-subsc. Based Programming-Classes and objects, instance variables, methods, Member access modifiers: public, private, protect (access), and predicate methods, Final instance variables, Finalizers, garbage collection, Static class members, This refet Oriented Programming – Inheritance, Superclass, subclass, I Dynamic method binding, abstract class, Concrete class, Inner of Type-wrapper class for primitive data types, Interfaces. C Interface. Event-Driven Programming and Event Handling M Components, Mouse and keyboard event handling, Adapter of managers	va applications rules, Naming pes, Arithmetic ators. Program structure, Jump methods, User- Pass-by-value, and allocation, ripted. Object- , and instance cted, package, (mutator), Get Composition, erence. Object- Polymorphism, lass definition, Graphical User Iodel, Window
Course Content		
Weeks	Detailed Course Outline	Allocated
		Time
Week 1	1. Overview of computer system.	2 Hours
	2. Concept of problem solving I and II (applying algorithmic thinking to colve programming problems)	
Week 2	thinking to solve programming problems).3. categories of various programming languages.	2 Hours
WEEK 2	 evaluation of major programming languages. 	2 nours
	 5. historical development of Java Programming language 	
	6. introduction to object-oriented programming	
Week 3, 4, and	7. First java program.	9 Hours
5.	8. Features of Java and syntax of Java program.	> nours
1	5 1 6	
	9. Types of Java Programs, Edit, compile, and run Java	
	9. Types of Java Programs, Edit, compile, and run Java applications and applets.	
	 Types of Java Programs, Edit, compile, and run Java applications and applets. Variables, data types, and expressions- Identifier rules, 	
Week 6 and 7	9. Types of Java Programs, Edit, compile, and run Java applications and applets.	6 hours
Week 6 and 7	 Types of Java Programs, Edit, compile, and run Java applications and applets. Variables, data types, and expressions- Identifier rules, Naming variables, constants (final) and references, 	6 hours
Week 6 and 7	 Types of Java Programs, Edit, compile, and run Java applications and applets. Variables, data types, and expressions- Identifier rules, Naming variables, constants (final) and references, Primitive data types Arithmetic Operators Assignment Operators 	6 hours
Week 6 and 7	 Types of Java Programs, Edit, compile, and run Java applications and applets. Variables, data types, and expressions- Identifier rules, Naming variables, constants (final) and references, Primitive data types Arithmetic Operators Assignment Operators Relational and Logical Operators. 	6 hours
Week 6 and 7	 9. Types of Java Programs, Edit, compile, and run Java applications and applets. 10. Variables, data types, and expressions- Identifier rules, Naming variables, constants (final) and references, 11. Primitive data types 12. Arithmetic Operators 13. Assignment Operators 14. Relational and Logical Operators. 15. Program control flow-Sequence structure, 	6 hours
Week 6 and 7	 9. Types of Java Programs, Edit, compile, and run Java applications and applets. 10. Variables, data types, and expressions- Identifier rules, Naming variables, constants (final) and references, 11. Primitive data types 12. Arithmetic Operators 13. Assignment Operators 14. Relational and Logical Operators. 15. Program control flow-Sequence structure, 16. Selection structure 	6 hours
Week 6 and 7	 9. Types of Java Programs, Edit, compile, and run Java applications and applets. 10. Variables, data types, and expressions- Identifier rules, Naming variables, constants (final) and references, 11. Primitive data types 12. Arithmetic Operators 13. Assignment Operators 14. Relational and Logical Operators. 15. Program control flow-Sequence structure, 	6 hours

Week 8,	9,10	19. Methods - Java API and Package/Library methods,	12 Hours
and 11.		20. User-defined methods,	
		21. Scope and duration,	
		22. Local and Field variables,	
		23. Parameter Passing (Pass-by-value and Pass-by-reference)	
		24. Recursion.	
		25. Overloading.	
	,	26. Arrays (Declaration and allocation, passing arrays to methods, sorting, searching Multiple-subscripted).	
	,	27. Object-Based Concept (Classes and objects, instance variables, and instance methods),	
	,	28. Member access modifiers: public, private, protected, package,	
		29. Creating packages, Constructors, overloaded constructors, Set (mutator), Get (access), and predicate methods, Final instance variables, Composition, Finalizers, garbage	
		 collection, Static class members, This reference. 30. Object-Oriented Programming – Inheritance, Superclass, subclass, Polymorphism, 	
		 31. Dynamic method binding, abstract class, Concrete class, Inner class definition, Type-wrapper class for primitive data types, Interfaces. 	
		32. Graphical User Interface. Event-Driven Programming and Event Handling Model, Window Components, Mouse and keyboard event handling,	
		33. Adapter classes, Layout managers	
		Continuous Assessment	
After Week	12	34. Examinations	

- 1. Malik D. S. (2018) Java Programming: From Problem Analysis to Program Design, Fou Edition, Pearson Edition
- 2. John Lewis, William Loftus, (2001) Java Software Solutions, Addison Wesley, 2001.
- 3. Bradley Kjell, Introduction to (2008) Computer Science using Java.
- 4. Paul J., Deitel, Tem R. Nieto (2012) Java How to program. 8th Edition. Pearson Education Limited.
- 5. Peter Nikolopoulos. (1997). Expert Systems: Introduction to First and Second Generation and Hybrid Knowledge Based Systems 1st Edition. ISBN-13: 978-0824799274

CSC222 Computer Electronics (3 Units)

FEDERAL UNIVERSITY LOKOJA COURSE OUTLINE		
Faculty	Sciences	
Department	Computer Science	
Course Title	Computer Electronics	
Year of Study	П	
Course Code	CSC222	
Credit Hours	3	
Contact Hours	36	
Pre-requisite(s)		
Mode of Delivery	Classroom Lectures	
	Term Paper Presentations	
	Laboratory Practical Sessions	
Mode of Assessmen	nt	Weight%

Continuous Assessm	nent	40%
Final Examination		60%
Total		100%
Course Lecturers	Dr. Emeka Emmanuel Ogbuju	
and Instructor(s) Course	-Laboratory Instructors This course is to prepare students on how to develop innovative	e models and
Description	conduct comprehensive computer electronics simulations, to solv life problems of our society. The aim of this course is to teac principles of computer electronics and the interface between cor and electronics; how computer science and electronics can be used	e diverse real h students the nputer science
C	'real-life scenarios' in order to solve real-life problems.	
Course Objectives	 At the end of the course, students are expected to: <i>i</i>) Understand the meaning of computer electronics <i>ii</i>) Understand the applications of computer electronics <i>iii</i>) Understand the interface between computer science a 	nd electronics
Learning Outcomes	 At the end of the course, students will be able to: 46. Do some simple practical implementations of so electronics projects such as Seven segment display 47. Perform practical mini projects on traffic light systems 	
Teaching and Learning	The class will meet for three hours each week. Class time will combination of Lectures, Group project Presentation, Tutorials a Practical Sessions. Key concepts would be taught during instructor while the Laboratory sessions will be based on problem-solving groups using Assembly Language Programming, Proteus, etc.	nd Laboratory
Detailed Course Content	Introduction to Computer Electronics; what is Computer Applications of Computer Electronics. Microcontroller Architec to the LCD; Project 6E: To Introduction to Programmable chips; of Microcontrollers; Features of a Microcontroller; Types of Mic The INTEL Microcontrollers; The ATMEL 89XX Series; Th Microcontroller (Description); The Microcontroller Memory; R Basic Electricity; Component's description of electrical equipme Language Programming; Features and Characteristics of Assem The 8051 Instruction Sets; More on Assembly Language Software Requirements for Chip Programming; Structure Language Program for Microcontrollers; How to Burn (Transfer) the Micro-Controller; Procedure for the Burning Process; Other Im Working with Light Emitting Diodes (LEDS). Working with Working with MOTORS. Display Units; Seven Segment Displa To display numbers on the 7-segment display; Circuit descript Design; Program Codes for Project 6A ; Project 6B: To display s segment display; Circuit description; Software Design; Program Project 6B. Project 6C: To display moving text on the Seven Seg Circuit Description; Software Design; Program Codes for Proje 6D: To use Keypad to control seven segment display; Circuit Software Design; Program Codes for Project 6D. Liquid Crystal D LCD Connections and PinOuts; PIN Descriptions; LCD M Commands of a HD44780 LCD; Interfacing the LCD to a M Sending Command display the text on the LCD; Circuit Descript Design; Program Codes for Project 6E; Dot Matrix Display Information Display on a Dot Matrix Display; Circuit Descript Design. Project 6G: Practical on 14-Segment Display - Sir hardware practical. Mathematical Operations with Mic Introduction to Logic Gates, Counters; Decoders; Encoder	ture; and Data Brief History crocontrollers HE AT89C52 egister Banks ent. Assembly bly Language Programming of Assembly Program into portant Notes n KEYPADS y; Project 6A tion; Softward tatic text on 7 am Codes for ment Display ct 6C. Project t Description Display (LCD) emory; Basic icrocontroller tion; Softward y. Project 6F tion; Softward nulations and crocontrollers

Weeks	Detailed Course Outline	Allocated Time
Week1	Introduction to Computer Electronics; What is Computer Electronics? Applications of Computer Electronics. Microcontroller Architecture; Introduction to Programmable chips; Brief History of Microcontrollers; Features of a Microcontroller; Types of Microcontrollers; The INTEL Microcontrollers; The ATMEL 89XX Series; THE AT89C52 Microcontroller (Description);	3 Hours
Week2,3,4	The Microcontroller Memory; Register Banks. Basic Electricity; Component's description of electrical equipment. Assembly Language Programming; Features and Characteristics of Assembly Language;	9 Hours
Week,5,6	The 8051 Instruction Sets; More on Assembly Language Programming; Software Requirements for Chip Programming; Structure of Assembly Language Program for Microcontrollers;	6 Hours
Week7,8	How to Burn (Transfer) Program into the Micro-Controller; Procedure for the Burning Process; Other Important Notes. Working with Light Emitting Diodes (LEDS). Working with KEYPADS; Working with MOTORS.	6 hours
Week9,10,11,12	Laboratory Practical: Display Units; Seven Segment Display; Project 6A: To display numbers on the 7-segment display; Circuit description; Software Design; Program Codes for Project 6A ; Project 6B: To display static text on 7-segment display; Circuit description; Software Design; Program Codes for Project 6B. Project 6C: To display moving text on the Seven Segment Display; Circuit Description; Software Design; Program Codes for Project 6C. Project 6D: To use Keypad to control seven segment display; Circuit Description; Software Design; Program Codes for Project 6D. Liquid Crystal Display (LCD); LCD Connections and PinOuts; PIN Descriptions; LCD Memory; Basic Commands of a HD44780 LCD; Interfacing the LCD to a Microcontroller; Sending Command display the text on the LCD; Circuit Description; Software Design; Program Codes for Project 6E; Dot Matrix Display. Project 6F: Information Display on a Dot Matrix Display; Circuit Description; Software Design. Project 6G: Practical on 14-Segment Display - Simulations and hardware practical. Mathematical Operations with Microcontrollers; Introduction to Logic Gates, Counters; Decoders; Encoders; Electronic Workbench Project Implementations and Presentations Continuous Assessment II: Written Test	12 Hours
After Week 12	Examinations	
Recommended Re	ading Material	5th
Edition, Pro 2. DC Tayal & Claypool 9	entice-Hall of India Pvt.Ltd 9788120334090	Morgan &

19.5 300 Level First Semester

CSC 501 - Structured Frogramming (5 Cints)	C 301 - Structured Programming (3 Units)
--	--

FEDERAL UNIVERSITY LOKOJA COURSE OUTLINE	
Faculty	Sciences

]
Department	Computer Science	
Course Title	Structured Programming	
Year of Study	III	
Course Code	CSC 301	
Credit Hours	3	
Contact Hours	42	
Pre-requisite(s)	CSC211	
Mode of Delivery	Classroom Lectures Laboratory Practical Sessions	
Mode of Assessmer	nt	Weight%
Continuous Assessn	nent	40%
Final Examination		60%
Total		100%
Course Lecturer	Abubakar Aliyu	10070
Course	In this course the student will learn the basic Concept of Pro	blem Solving
Description	using Structured Programming paradigm	
Course Objectives	 This course would enable the understanding of the following: 1. General overview of Computer System 2. Overview of programming Languages 3. General Concept of problem solving 4. Concept of programming Languages 5. Evaluation of major programming languages 6. Statement level Control structures 7. History and Concept of Structured Programming 	
Learning Outcomes	 History and Concept of Structured Programming At the end of this course, students should be able to: Understand the general concept of Computer System Outline the basic categories of programming Languages General Concept of problem solving Understand the Concept of programming Languages Evaluates the major programming languages Understand Statement level Control structures Understand the history and rational of structured programming languages. Know the basic concepts of top- down analysis, modular programming and structured code. Know the importance of studying structured programming languages. Familiarize with some structured programming languages paradigms Understand the fundamental concepts of structured design approaches such as, modular programming, top-down design bottom-up design and stepwise refinement. Familiarize with the use of sub-programs. Understand the fundamental concepts of control flow constructs in structured programming languages. Inderstand the fundamental concepts of control flow constructs in structured programming languages. Inderstand the fundamental concepts of control flow constructs in structured programming languages. Understand the fundamental concepts of control flow constructs in structured programming languages. 	
Teaching and Learning	techniques	
Detailed Course Content	development using C, C++ or Python. Brief overview of Computer System. Overview of Programmin General Concept of Problem Solving. Understand the	

		т
Course Content Se	Programming Languages. Evaluation of Major Programmi Semantic Level Control Structures. Introduction to structured elements, structured design principles, Abstraction & modul refinement, Introduction to structured design techniques, of structure-oriented programming with other contemporar important advantages of structured programming over unst Definition of structured programming approach like top-or abstraction, modular programming and structured codin programming languages and their advantages. Concepts of str approaches like modular programming, top-down design, bo stepwise refinement. Basics of data representation and Function basics, Local variables, Parameters and argumen Module basics, Exceptions, Testing and Debugging, Sorting File Processing: Text files processing, Database Connection a	d programming arity, Stepwise Comparison of ry paradigms, tructured ones. down analysis, ng. Structured ructured design ttom-up design manipulation, nts, Recursion, and Searching.
Weeks	Detailed Course Outline	Allocated
		Time
Week 1 and 2	24. General Overview of Computers System	6 Hours
	25. Overview of Programming Languages	
	26. Introduction to Problem Solving I27. Introduction to Problem Solving II	
	28. Concept of programming languages	
Week 3 and 4	29. Evaluation of Major Programming Languages	6 Hours
	30. Statement level Control structures	0 110 11 5
	31. Continuous Assessment I	
Week 5 and 6	32. Introduction to Structured Programming	6 Hours
	33. concepts of top- down analysis, modular	
	programming and structured code.	
	34. importance of studying structured programming	
	languages. 35. structured programming languages paradigms	
Week 7, 8 and 9	36. Fundamental concepts of structured design	9 hours
week 7, 6 and 5	approaches such as,	y nours
	- modular programming,	
	- top-down design	
	- bottom-up design and	
	- stepwise refinement.	
	37. Concept and development of sub-programs.	
	38. Fundamental concepts of control flow constructs in	
Week 10,11 and	structured programming languages. 39. Concept of debugging and identify the various types	9 Hours
12	of debugging techniques.	> mours
	40. Concepts of program testing and types of testing	
	techniques	
	41. Continuous Assessment II	
After Week 13	42. Examinations	
Recommended Rea	ding Material	
1. Conway, R.,	& GRIES, D. (1973) An introduction to programming: A struct	ured approach.
	Mass: Winthrop, 1973.	
	Dukstra, E. W & Hoare, C. A. R. Structured programmin	ng. New York:
Academic P		dinag of IFID
	W. Programming considered as a human activity. <i>Proceed</i> 5. Washington, D. C: Spartan Books, 1965.	eaings of IFIP
	Washington, D. C. Spartan Books, 1965. W. Goto Statement considered harmful. <i>Communications of th</i>	he ACM 1968
	; 538; 541. "*	<i>i 1 1 1 1 1 1 1 1 1 1</i>
	W. Structured programming. In P. Naur & B. Randell (H	Eds.), Software
engineering techniques. Brussels: NATO Scientific Affairs Division, 1969.		

engineering techniques. Brussels: NATO Scientific Affairs Division
 Malik D. S. (2018) C++ Programming. 8th Edition, Pearson Edition

- Paul J., Deitel, Tem R. Nieto (2012) C++ How to program. 8th Edition. Pearson Education Limited. ISBN: 10:0-273-75276-6
- 8. Timothy B. D'Orazio (2004) Programming in C++: Lesson and Application. ISBN: 13:978-0-07-24-2412-6. McGrew-Hill
- Rajiv Chopra. (2014). Software testing: A practical Approach.4th Edition. S. K. Kataria abd Sons Limited.

CSC 303 - Fundamental Data Structure (C++ or Java) (3 Units) FEDERAL UNIVERSITY LOKOLA

FEDERAL UNIVERSITY LOKOJA		
COURSE OUTLINE		
Faculty	Science	
Department	Computer Science	
Course Title	Fundamentals of Data Structures	
Year of Study	3	
Course Code	CSC 303	
Credit Hours	3	
Contact Hours	72	
Pre-requisite(s)	Nil	
Mode of Delivery	Classroom Lectures Laboratory Practical Sessions	
Mode of Assessm	ent	Weight%
Continuous Assess	sment	40%
Final Examination	L	60%
Total		100%
Course Lecturers and Instructor(s)	ecturers and • Dauda O. Isiaka	
Course Description	Data structures are essential building blocks for designing efficient algorithms. Thus, they play a central role in computer science and are important in many areas of electrical engineering, computational biology, computational finance, etc. They are used in a variety of applications today including search engines (e.g., Google, Bing), social networking applications (e.g., Facebook, Twitter), embedded systems (e.g., cell phones, robots), and DNA analysis. This course will introduce the fundamentals of data structures and will provide a thorough understanding of how to systematically organize data in a computer system. In addition, this course will introduce students to analytical tools for comparing data structures in terms of their time and space complexities. Moreover, students will appreciate the importance of programming structures, abstractions, and algorithms for improving the efficiency of computer programs.	

1

Course	At the end of the course, students should be able to:
Objectives	 Familiarize with good programming design methods, particularly Top-down design Understand the Fundamental concepts of data, data structures, Abstract Data Type (ADT), algorithm and program. Know how to choose a data structure type that will depend on the type of information involved, the Volume of data involved, the kind of manipulations to be done on the component of the data structure and how often processing is to be done on the components of the data structure. Identify the attributes of data structure for particular applications. Know how to store the components of a data structure in contiguous and linked storages. Use arrays as a particular data structure type, its declarations, storage and manipulation within the computer system.
Learning	At the end of the course, students will be able to:
Outcomes	 Develop the data structures for linked lists, stacks, queues, trees and graphs. Implement the data structures using appropriate programming language (example, Python, Java, C/C++), in contiguous and linked storages. Familiarize with the design and implementation of some simple searching, sorting algorithms. Familiarize them self with memory management and hash tables. Participate in programming Laboratory exercises to implement data structures covered in this course. Familiarize with the use of pointers in storage (lined storage allocation) to obtain the following advantages: Prevent movement of components or interchange of positions during processing. Gives rise to maximization of memory usage since excess memory declaration is eliminated Allocation and re-allocation could be done while the program is running. Save time because there is no interchange of component positions. Encourages efficient memory management.
Teaching and	Lectures: The contents of the course should be presented to the
Learning	students in the classroom, which should be in a form of lecture notes
	compiled from different relevant literature. Videos of lectures

	delivered by prominent scholars in data structures, can be shown to the
	students, so that they can have diverse ideas about the course.
	Projects: Individual and group projects will be given to the students.
	When group projects tasks are given, it is expected that the students
	should specialize in different sections of the project. The project
	should be a written program in C/C++ to solve problems in data
	structures. A printed copy of the results of each group project is
	submitted and serve as part of their continuous assessment scores.
Detailed Course	Introduction to some fundamental definitions of data, data structures,
Content	Abstract Data Type (ADT), algorithm and program, Attributes and
	criteria of choosing a data structure type. Memory organization and
	Data storage. Array: Definition, declaration and supplying the element
	of an array. Some operations on arrays, such as searching for a
	particular element, obtaining the highest element of an array and
	arranging the elements of the array in ascending order of magnitude.
	Linked List: The use of pointer and its advantages, Linked list
	illustration. Insert and deletion in a Linked list, Algorithm to find a
	component in linked list, Multi-linked list. Doubly and circular Linked
	list. Stacks and Queues: Stack data structure, Contiguous and linked
	Representations of a stack, Insertion and deletion in contiguous stack,
	Insertion and deletion in linked stack, Queue data structures, Queues
	in contiguous Representation, Circular Queue data structure, Linked
	Representation of Queues, Insertion and Deletion in Queues using
	linked Representation. Tree: Tree data structures, Binary tree Data
	structures and its applications, Binary tree traversal, Converting an
	Arbitrary tree to a Binary tree, Binary tree storage in contiguous and
	linked Representations. Graphs: Graph data structure, Applications of
	graphs, Adjacency matrix and Adjacency list Representations of
	graph, Graph Traversal. Searching and sorting methods: Linear and
	Binary Search methods, some sorting methods such as; Insertion, tree,
	selection, shell, merge and Quick sorting methods. Hashing:
	Definition of hashing, Hash Table representation, Hash functions such
	as division and multiplication methods, Problems in implementation
	of hashing such as collision and overflows, Collision Resolution such
	as Open Addressing and Chaining, Resolution of overflow, Records

	and sets in Data Structure.	
	Course Content Sequencing	
Weeks	Detailed Course Outline	Allocated Time
Week1	43. Data Structure Concepts	6 Hours
	• Introduction to some fundamental definitions of	
	data,	
	• Data structures, Abstract Data Type (ADT),	
	algorithm and program, Attributes and criteria	
	of choosing a data structure type.	
	Memory organization and Data storage.	
Week2,3	44. Array and List	12 Hours
	• Array: Definition, declaration and supplying	
	the element of an array. Some operations on	
	arrays, such as searching for a particular	
	element, obtaining the highest element of an	
	array and arranging the elements of the array in	
	ascending order of magnitude.	
	• Linked List: The use of pointer and its	
	advantages, Linked list illustration. Insert and	
	deletion in a Linked list, Algorithm to find a	
	component in linked list, Multi-linked list.	
	Doubly and circular Linked list.	
	Continuous Assessment I	
Week4,5,6	• Stacks and Queues: Stack data structure,	18 Hours
	Contiguous and linked Representations of a	
	stack, Insertion and deletion in contiguous	
	stack, Insertion and deletion in linked stack,	
	• Queue data structures, Queues in contiguous	
	Representation, Circular Queue data structure,	
	Linked Representation of Queues, Insertion and	
	Deletion in Queues using linked	
	Representation.	
	representation.	

Week7,8• Tree: Tree data structures, Binary tree Data structures and its applications, Binary tree traversal, Converting an Arbitrary tree to a Binary tree, Binary tree storage in contiguous and linked Representations.12 hoursWeek9,10,11,12• Hashing: Definition of hashing, Hash Table representation, Hash functions such as division and multiplication methods, • Problems in implementation of hashing such as collision and overflows, Collision Resolution such as Open Addressing and Chaining, Resolution of overflow, Records and sets in Data Structure.24 HoursAfter Week 1246. Examinations46. ExaminationsRecommended ReadingAny available texts on Data Structures and Algorithms50.
traversal, Converting an Arbitrary tree to a Binary tree, Binary tree storage in contiguous and linked Representations.24 HoursWeek9,10,11,12• Hashing: Definition of hashing, Hash Table representation, Hash functions such as division and multiplication methods, • Problems in implementation of hashing such as collision and overflows, Collision Resolution such as Open Addressing and Chaining, Resolution of overflow, Records and sets in Data Structure. 45. Continuous Assessment IIAfter Week 1246. ExaminationsAfter Week 12Any available texts on Data Structures andAny available texts on Data Structures and
Binary tree, Binary tree storage in contiguous and linked Representations.24 HoursWeek9,10,11,12• Hashing: Definition of hashing, Hash Table representation, Hash functions such as division and multiplication methods, • Problems in implementation of hashing such as collision and overflows, Collision Resolution such as Open Addressing and Chaining, Resolution of overflow, Records and sets in Data Structure. 45. Continuous Assessment II24 HoursAfter Week 1246. Examinations47.RecommendedAny available texts on Data Structures and47.
and linked Representations.24 HoursWeek9,10,11,12• Hashing: Definition of hashing, Hash Table representation, Hash functions such as division and multiplication methods, • Problems in implementation of hashing such as collision and overflows, Collision Resolution such as Open Addressing and Chaining, Resolution of overflow, Records and sets in Data Structure. 45. Continuous Assessment II24 HoursAfter Week 1246. Examinations40. ExaminationsRecommendedAny available texts on Data Structures and
Week9,10,11,12• Hashing: Definition of hashing, Hash Table representation, Hash functions such as division and multiplication methods,24 Hours• Problems in implementation of hashing such as collision and overflows, Collision Resolution such as Open Addressing and Chaining, Resolution of overflow, Records and sets in Data Structure.24 Hours45. Continuous Assessment II46. Examinations46. ExaminationsAfter Week 12Any available texts on Data Structures and
representation, Hash functions such as division and multiplication methods, Problems in implementation of hashing such as collision and overflows, Collision Resolution such as Open Addressing and Chaining, Resolution of overflow, Records and sets in Data Structure. 45. Continuous Assessment II After Week 12 46. Examinations Recommended Any available texts on Data Structures and
and multiplication methods, • Problems in implementation of hashing such as collision and overflows, Collision Resolution such as Open Addressing and Chaining, Resolution of overflow, Records and sets in Data Structure. 45. Continuous Assessment II After Week 12 46. Examinations Recommended Any available texts on Data Structures and
 Problems in implementation of hashing such as collision and overflows, Collision Resolution such as Open Addressing and Chaining, Resolution of overflow, Records and sets in Data Structure. 45. Continuous Assessment II After Week 12 Any available texts on Data Structures and
collision and overflows, Collision Resolution such as Open Addressing and Chaining, Resolution of overflow, Records and sets in Data Structure. 45. Continuous Assessment II After Week 12 46. Examinations Recommended Any available texts on Data Structures and
such as Open Addressing and Chaining, Resolution of overflow, Records and sets in Data Structure. 45. Continuous Assessment IIAfter Week 1246. ExaminationsRecommendedAny available texts on Data Structures and
Resolution of overflow, Records and sets in Data Structure. 45. Continuous Assessment II After Week 12 46. Examinations Recommended Any available texts on Data Structures and
Data Structure. 45. Continuous Assessment II After Week 12 46. Examinations Recommended Any available texts on Data Structures and
45. Continuous Assessment IIAfter Week 1246. ExaminationsRecommendedAny available texts on Data Structures and
After Week 1246. ExaminationsRecommendedAny available texts on Data Structures and
Recommended Any available texts on Data Structures and
Jere and y
Reading Algorithms
S •
Material

CSC305 - Compiler Construction I (3 Units)

FEDERAL UNIVERSITY LOKOJA COURSE OUTLINE			
Faculty	Sciences		
Department	Computer Science		
Course Title	Compiler Construction I		
Year of Study	III		
Course Code	CSC305		
Credit Hours	redit Hours 3		
Contact Hours	36		
Pre-requisite(s)	e-requisite(s) Nil		
Mode of Delivery Classroom Lectures			
Mode of Assessment		Weight%	
Continuous Assessment		40%	
Final Examination		60%	

Total	100%	
Course Lecturers	Terungwa Simon Yange	
Course Description	The course gives an introduction to the design and implementation of a compiler with emphasis on principles and techniques for program analysis	
	and translation. It also gives an overview of the tools for compile construction. Lexical analysis, token selection, transition diagrams, and finite automata. The use of context-free grammars to describe syntax, derivation of parse trees, and construction of parsers. Syntax directed translation schemes; Intermediate code; Symbol table; Code generation; Detection reporting, recovery and correction of errors.	
Course	This course would enable the understanding of the following:	
Objectives	 recognize various classes of grammars, languages, and automata, and employ these to solve common software problems 	
	2. explain the major steps involved in compiling a high-leve programming language down to a low-level target machine language	
	 construct and use the major components of a modern compiler; 	
	4. work together effectively in teams on a substantial software implementation project.	
Learning	At the end of the course, students will be able to:	
Outcomes	 Write and use simple object-oriented high-level programming languages to implement. sub-components/ sub-parts of a compile Use compiler construction tools to generate lexical and syntax analyzers. Understand and be able to explain the functions of the differen phases of a compiler. Understand the key issues in the construction of production o compilers for real high-level Languages and real target machines Understand how a compiler can generate code to make good use of some particular target machine characteristics 	
Teaching and Learning	 Lectures: contents of the course will be presented and taught to students in the classroom. Classroom teachings will be supported with practical examples. 	

	2. Projects : Group and individual projects will be g	iven to students
	to solve practical problems in compiler constru	ction. Students
	will be expected to come to the classroom in	dividually and
	defend their respective individual projects.	
	3. Assignments: Students will; be asked to solve cla	ss assignments
	with respect to topics covered in the class to ex	amine, test the
	understanding of and reveal the state of assimilation	on of the course
	contents by students.	
	4. Term Papers: Students will be asked to write	comprehensive
	term papers on selected sub-topics within	the compiler
	construction course contents. The term papers wi	ll help students
	develop their understanding and in-depth analysis	of components
	of the course contents. In some situations, studen	ts will be given
	a typical compiler construction research paper an	d will be asked
	to study, analyze and summarize in their own unde	rstanding, gaps
	and findings from the contents of the paper. Su	ch term papers
	however will be subjected to thorough plagiarism	checks.
Detailed Course	Introduction to compiler construction, Reasons why it is ess	sential to study
Content	compiler construction, Languages and Translators, Type	s and role of
	grammars, Compiler structure and design issues, Phases of con	mpiler, Internal
	Structure of a Compiler, Compile-time and run- time diagno	ostics, Symbol
	tables and their data structures, Lexical analysis, Token, Patter	rn and lexemes,
	Operations on languages, Regular expressions, Introduct	ion to Syntax
	analysis, Applications of Syntax analysis, Types of Errors enco	ountered during
	compiler usage and how to recover from such errors. Intro	duction to and
	basics of Context-free Grammars, applications and examp	les. Functional
	relationship between lexical analysis, expression analy	sis and code
	generation. Use of a standard compiler as a working vehicle.	
Course Content Sequencing		
Weeks	Detailed Course Outline	Allocated Time
Week1	1. Introduction to compiler construction, Reasons why it	3 Hours
	is essential to study compiler construction, Languages	
	and Translators	

Week2,3	2.	Types and role of grammars, Compiler structure and	6 Hours
		design issues, Phases of compiler, Internal Structure of	
		a Compiler, Compile-time and run- time diagnostics	
		Continuous Assessment I	
Week4,5,6	3.	Symbol tables and their data structures, Lexical	9 Hours
		analysis, Token, Pattern and lexemes, Operations on	
		languages, Regular expressions, Introduction to Syntax	
		analysis and Applications of Syntax analysis.	
Week7,8	4.	Types of Errors encountered during compiler usage	6 hours
		and how to recover from such errors	
Week9,10,11,12	5.	Introduction to and basics of Context-free Grammars,	12 Hours
		applications and examples. Functional relationship	
		between lexical analysis, expression analysis and code	
		generation. Use of a standard compiler as a working	
		vehicle.	
	6.	Revision and Continuous Assessment II	
After Week 12	7.	Examinations	
Recommended Re	ading '	Material	<u> </u>

Recommended Reading Material

- 1. Aho, Alfred & Sethi, Ravi & Ullman, Jeffrey. *Compilers: Principles, Techniques, and Tools* ISBN 0201100886 The Classic Dragon book.
- 2. Appel, A., Modern Compiler Implementation in Java, 2nd ed., Cambridge University Press, 2002.
- Appel, Andrew Modern Compiler Implementation in C/Java/ML (respectively ISBN 0-521-58390-X,ISBN 0-521-58388-8, ISBN 0-521-58274-1) is a set of cleanly written texts on compiler design, studied from various different methodological perspectives.
- 4. Brown, P.J. *Writing Interactive Compilers and Interpreters* ISBN 047127609X Useful practical advice, not much theory.
- Fischer, Charles & LeBlanc, Richard. Crafting A Compiler ISBN 0805332014 Uses an ADA like pseudo-code.
- 6. Fischer, LeBlanc, Cytron, Crafting a Compiler Implementation, Addison-Wesley
- 7. Holub, Allen Compiler Design in C ISBN 0131550454 Extensive examples in "C".
- 8. Hunter, R. *The Design and Construction of Compilers* ISBN 0471280542 several chapters on theory of syntax analysis, plus discussion of parsing difficulties caused by features of various source languages.
- 9. Keith, D. Cooper & Linda Torczon, "Engineering a Compiler", Morgan Kaufmann Publishers, 2004
- Pemberton, S. & Daniels, M.C. *Pascal Implementation. The P4 Compiler* ISBN 0853123586 (Discussion) and ISBN 085312437X (Compiler listing) Complete listing and readable commentary for a Pascal compiler written in Pascal.

- 11. Randy Allen and Ken Kennedy, "Optimising Compilers for Modern Architectures", Morgan Kaufmann Publishers, 2001.
- 12. Weinberg, G.M. *The Psychology of Computer Programming: Silver Anniversary Edition* ISBN 0932633420 Interesting insights and anecdotes.
- Wirth, Niklaus Compiler Construction ISBN 0201403536 From the inventor of Pascal, Modula-2 and Oberon-2, examples in Oberon.

CSCSU7 - Database	Management I (3 Units) FEDERAL UNIVERSITY LOKOJA	
Fa an lás	COURSE OUTLINE	
Faculty	Sciences	
Department	Computer Science	
Course Title	Database Management I	
Year of Study	III	
Course Code	CSC307	
Credit Hours	3	
Contact Hours	36	
Pre-requisite(s)	Nil	
Mode of Delivery	Classroom Lectures Laboratory Practical Sessions	
Mode of Assessme	nt	Weight%
Continuous Assessn	nent	40%
Final Examination	Final Examination60%	
Total 100%		100%
Course Lecturers	Terungwa Simon Yange	
Course	The course is designed to provide students with a strong	foundation in
Description	systematic approaches to design and implementation of databas	e applications.
	Preliminarily operations like requirements gathering and data	base planning
	will be covered. The course will also introduce students to developing of	
	application programs that talk to the database. These application	ations may be
	online or off line.	
Course	This course would enable the understanding of the following:	
Objectives	 Basic concepts pertaining to the data, information a management; 	nd knowledge
	 Demonstrate the variety of common contexts ir organization and management is required in modern so 	

CSC307 - Database Management I (3 Units)

	3.	Basic database concepts including the structure and operation of the relational data model
	4.	
	т.	role of a database management system in an organization
	5	
	5.	,
		a logical data model into a relational database structure.
	6.	How to create and manipulate relational databases using QBE and
		SQL including constructing simple and moderately advanced
	_	database queries using Structured Query Language (SQL).
	7.	How to model logical data requirements using entity-oriented
		techniques
	8.	Apply normalization techniques to a database
	9.	Apply logical database design principles, including E-R diagrams
		and database normalization.
	10.	How to develop database applications using the most current
		database technologies
Learning	At the	end of the course, students will be able to:
Outcomes	1.	Understand basic database concepts including the structure and
		operation of the relational data model
	2.	Understand the functions of a DBMS and database administration as
		well as the role of a database management system in an organization
	3.	Understand the structure and methods of the relational data model,
		and transform a logical data model into a relational database
		structure.
	4.	Create and manipulate relational databases using QBE and SQL
		including constructing simple and moderately advanced database
		queries using Structured Query Language (SQL).
	5.	Model logical data requirements using entity-oriented techniques
	6.	Apply normalization techniques to a database
	7.	Understand and successfully apply logical database design
		principles, including E-R diagrams and database normalization.
	8.	Develop database applications using the most current database
		technologies
Teaching and	1.	Lectures: Detailed content of course are taught in class using problem
Learning		solving approaches
	2.	Presentations: Course contents are shared among students to research
		on. Students are grouped or assigned work to individually present.
		This is done for the purpose of self-reading improvement and student
		assessment.

		3. Laboratory Practical: Laboratory sessions will be based on the use
		of SQL to define and manipulate databases us any of MySQL, Oracle,
		MS Access, MSSQL etc.
		4. Project: Students will be required to formulate problems in the
		different areas of the course content, design the solutions to these
		problems and solve them.
Detailed	Course	Database Management Concepts: Background and history of databases, the
Content		general concepts of data management, basic database terminology,
		comparison between the file management and database management
		approaches, advantages and disadvantages of database processing, the
		Relational model. Database Design: entity-relationship modeling, user
		information analysis and representation, form table (first normal form (1NF),
		second normal form (2NF), third normal form (3NF) and fourth normal form
		(4NF)). Query by Example (QBE): Manipulating tables using QBE, use
		conditions, calculated fields, and built-in functions. Define multiple
		criteria, Use the logical operators Run action queries (make table, update,
		delete, and append). Structured Query Language (SQL): Create tables,
		Insert data into a table, Run system catalog commands, Understand the format
		of the SQL SELECT command, Write single table queries, Write multiple
		table queries, Use simple conditions in queries, Use compound conditions in
		queries, Use computed columns in queries, Use the SUM, COUNT, MAX,
		MIN and AVG aggregate functions in queries, Use a subquery, Perform
		union, intersection and difference set operations in queries, Create views,
		Apply some of the administrative commands (Grant, Revoke, and Index).
		Practical aspects and demonstration of information storage & retrieval,
		information management applications, information capture and
		representation, analysis & indexing, search, retrieval, information privacy,
		integrity, security; scalability, efficiency and effectiveness. Introduction to
		advanced database topics, such as distributed database systems and the data
		warehouse. Relational Database: Mapping Conceptual schema to relational
		Schema; Database Query Languages (SQL). Concept of Fundamental
		dependencies & Multi-Valued dependencies. Transaction Processing;
		Distributed databases. Database Security. Internet Databases, Introduction to
		Data Warehousing and Data Mining. Database Recovery Techniques as well
		as emerging Database technologies. Several software libraries and publicly
		available data sets will be used to illustrate the application of selected
		algorithms, Emphasis will be on machine learning algorithms and
		applications.
Course Co	ntant Sa	quanding

Course Content Sequencing

Weeks	Detailed Course Outline	Allocated Time
Week1	47. Database Management Concepts	3 Hours
	Background and history of databases	
	• General concepts of data management	
	Basic database terminology,	
	• Comparison between the file management and	
	database management approaches	
	• Advantages and disadvantages of database	
	processing	
	Relational model.	
Week2,3	48. Database Design and Query by Example	6 Hours
	• Entity-relationship modeling	
	• User information analysis and representation	
	• First normal form (1NF)	
	• Second normal form (2NF)	
	• Third normal form (3NF)	
	• Fourth normal form (4NF))	
	Manipulating tables using QBE	
	• Use conditions, calculated fields, and built-in	
	functions	
	• Define multiple criteria, Use the logical	
	operators Run action queries (make table,	
	update, delete, and append)	
	Continuous Assessment I	

Week4,5,6	49. Structured Query Language (SQL)	9 Hours
	 Create tables, insert data into a table, run system catalog commands Understand the format of the SQL SELECT command Write single and multiple table queries Use simple and compound conditions in queries Use computed columns in queries Use the SUM, COUNT, MAX, MIN and AVG aggregate functions in queries Use a subquery, perform union, intersection and difference set operations in queries Create views, Apply some of the administrative commands (Grant, Revoke, and Index). 	
Week7,8	 50. Practical aspects and demonstration of information storage & retrieval, information management applications, information capture and representation, analysis & indexing, search, retrieval, information privacy, integrity, security; scalability, efficiency and effectiveness. 	6 hours
Week9,10,11,12	 51. Introduction to advanced database topics, such as distributed database systems and the data warehouse. Relational Database: Mapping Conceptual schema to relational Schema; Database Query Languages (SQL). Concept of Fundamental dependencies & Multi-Valued dependencies. Transaction Processing; Distributed databases. Database Security. Internet Databases, Introduction to Data Warehousing and Data Mining. Database Recovery Techniques as well as emerging Database technologies. Several software libraries and publicly available data sets will be used to illustrate the application of selected algorithms, Emphasis will be on machine learning algorithms and applications. Revision and Continuous Assessment II 	12 Hours
After Week 12	52. Examinations	
Recommended Rea	nding Material	

1.	Atzeni, P., Ceri, S., Paraboschi, S., & Torlone, R. (1999). Database systems: concepts,
	languages & architectures (Vol. 1). London: McGraw-Hill.
2.	Batini, C., Ceri, S., & Navathe, S. B. (1992). Conceptual database design: an
	Entityrelationship approach (Vol. 116). Redwood City, CA: Benjamin/Cummings.
3.	Dependencies ,TODS, 1:4, December 1976.
4.	Codd, E (1970) — A Relational Model for Large Shared Data BANks CACM, 136, June
	1970.
5.	Connolly, T. M., & Begg, C. E. (2005). Database systems: a practical
	approach to design, implementation, and management. Pearson
	Education
6.	David M. Kroenke, David J. Auer (2008). Database Concepts. New Jersey. Prentice
	Hall
7.	Elmasri Navathe (2003). Fundamentals of Database Systems. England. Addison
	Wesley.
8.	Fred R. McFadden, Jeffrey A. Hoffer (1994). Modern Database management. England.
	Addison Wesley Longman
9.	Graeme C. Simsion, Graham C. Witt (2004). Data Modeling Essentials. San Francisco.
	Morgan Kaufmann
10.	Kim, W., Reiner, D. S., & Batory, D. (Eds.). (2012). Query processing in database
	systems. Springer Science & Business Media.
11.	McHugh, J., Abiteboul, S., Goldman, R., Quass, D., & Widom, J. (1997). Lore: A database
	management system for semistructured data. SIGMOD record, 26(3), 54-66.
12.	Navathe, S. B., Tanaka, A. K., & Chakravarthy, S. (1992). Active Database Modeling
	and Design Tools: Issues, Approache, and Architecture. IEEE Data Eng.
13.	<i>Bull.</i> , <i>15</i> (1-4), 6-9.
14.	Pratt Adamski, Philip J. Pratt (2007). Concepts of Database Management. United States.
	Course Technology.
15.	Singh, S. K. (2011). Database systems: Concepts, design and applications. Pearson
	Education India.
16.	Teorey, T. J., Lightstone, S. S., Nadeau, T., & Jagadish, H. V. (2011). Database
	modeling and design: logical design. Elsevier.

	tim and Complexity Analysis (5 Units)	
FEDERAL UNIVERSITY LOKOJA		
	COURSE OUTLINE	
Faculty	Sciences	
Department	Computer Science	
Course Title	Algorithm and Complexity Analysis	
Year of Study	3	
Course Code	CSC311	

CSC 311 - Algorithm and Complexity Analysis (3 Units)

Credit Hours	3	
Contact Hours	42	
Pre-requisite(s)	CSC203	
Mode of Delivery	Classroom Lectures	
Mode of Assessment		Weight%
Presentation		20%
Continuous Assessme	nt	20%
Final Examination	111	60%
Total		100%
	My Mykowyood Abwod Shaby	100 70
Course Lecturers	Mr. Muhammad Ahmad Shehu	
and Instructor(s)		• .1 .1
Course Description	In this course the student will learn the approaches of m	e e
	of difficulties of algorithms for the purpose of identificat	tion of most suitable
	algorithm for a problem	
Course Objectives	This course would enable the understanding of the follo	wing:
	1. Know the big O, omega, and theta notations and	l their usage to give
	asymptotic upper, lower, and tight bounds o	on time and space
	complexity of algorithms.	
	2. Know how to determine the worst time complexity of algorithms	
	Know how to deduce the recurrence relations that describe the time	
	complexity of recursively-defined algorithms, and solve recurrence	
	relations using mathematical induction and	the recursion-tree
	method.	
	3. Design efficient algorithms and compare competi	ng designs based on
	their complexities.	
	4. Be familiar with mathematical and scientific pr	inciples relevant to
	computer science.	
	5. Explain the mathematical concepts used in descri	bing the complexity
	of an algorithm.	
	6. Select and apply algorithms appropriate to a parti	icular situation.
	7. Demonstrate basic understanding of some design	approaches such as
	greedy algorithms, dynamic programming and di	vide-and-conquer.
	8. Employ one from a range of strategies leading to the design of	
	algorithms to serve particular purposes.	
	9. Explain the trade-offs that exist between a range	e of algorithms that
	possess the same functionality.	
	10. Be familiar with advanced and modern topics in a	computer science.

	11. Be able to debug implemented software in a proficien	t manner
Lucia Octoor		
Learning Outcomes	At the end of the course, students will be able to:	1 · ·
	1. Understand why Algorithm and Complexity	analysis is an
	important area in Computer science	
	2. Understand where and how the course can be app	
	3. Identify the most suitable (in terms of efficiency)	solution out of
	various solutions to a problem.	
Teaching and	The class will meet for three hours each week. Class time wi	ill be used for a
Learning	combination of Lectures, Recitations, and Tutorials Sessions	
Detailed Course Content	Introduction to Algorithm Analysis, Fundamentals of Analys Efficiency: Big Oh, Big Omega, and Big Theta notations. R worst, best, and average analysis, Design and Analysis of Sorting Algorithms: Optimal searching and sorting algorithms binary search, Insertion sort, merge sort button-up sort, sele Priority queues and heaps, heapsort, Quicksort, Sorting Recurrence relations and their solution, Analysis of Divid Algorithms: Analyzing recursive algorithms, Recurrence rel pair, Convex hull, Analysis of Decrease-and-Conquer Algorit of Transform-and-Conquer Algorithms, Analysis of Algorithms, Space and Time Tradeoffs, Dynamic Programmi Analysis of Graph Algorithms: Depth-first traversal algori first traversal algorithms, Minimum spanning tree, Shortest p Advanced Designing Techniques: Dynamic Programmin Algorithms: Traveling salesperson approximation, Fibonacc	ates of growth: Searching and s (linear search, ection sort etc), in linear time. le-and-Conquer lations, Closest ithms, Analysis Brute Force ing, Design and thms, Breadth- oath algorithms, g and Greedy
	binomial coefficients, All-pairs shortest path algorithm, Desig of Parallel Algorithms	
Course Content Sequ	binomial coefficients, All-pairs shortest path algorithm, Desig of Parallel Algorithms	
Course Content Sequ Weeks	binomial coefficients, All-pairs shortest path algorithm, Desig of Parallel Algorithms	gn and Analysis Allocated
	binomial coefficients, All-pairs shortest path algorithm, Desig of Parallel Algorithms aencing	gn and Analysis
Weeks	binomial coefficients, All-pairs shortest path algorithm, Desig of Parallel Algorithms uencing Detailed Course Outline	gn and Analysis Allocated Time
Weeks	binomial coefficients, All-pairs shortest path algorithm, Desig of Parallel Algorithms Jencing Detailed Course Outline Introduction to Algorithm Analysis, Fundamentals of	gn and Analysis Allocated Time
Weeks	binomial coefficients, All-pairs shortest path algorithm, Desig of Parallel Algorithms Iencing Detailed Course Outline Introduction to Algorithm Analysis, Fundamentals of Analysis of Algorithm Efficiency: Big Oh, Big Omega, and	gn and Analysis Allocated Time
Weeks	binomial coefficients, All-pairs shortest path algorithm, Desig of Parallel Algorithms Detailed Course Outline Introduction to Algorithm Analysis, Fundamentals of Analysis of Algorithm Efficiency: Big Oh, Big Omega, and Big Theta notations. Rates of growth: worst, best, and	gn and Analysis Allocated Time
Weeks Week1	binomial coefficients, All-pairs shortest path algorithm, Desig of Parallel Algorithms Iencing Detailed Course Outline Introduction to Algorithm Analysis, Fundamentals of Analysis of Algorithm Efficiency: Big Oh, Big Omega, and Big Theta notations. Rates of growth: worst, best, and average analysis	gn and Analysis Allocated Time 3 Hours
Weeks Week1 Week2	binomial coefficients, All-pairs shortest path algorithm, Desig of Parallel Algorithms Detailed Course Outline Introduction to Algorithm Analysis, Fundamentals of Analysis of Algorithm Efficiency: Big Oh, Big Omega, and Big Theta notations. Rates of growth: worst, best, and average analysis Design and Analysis of Searching and Sorting Algorithms: Optimal searching and sorting algorithms (linear search,	gn and Analysis Allocated Time 3 Hours 3Hours
Weeks Week1 Week2	 binomial coefficients, All-pairs shortest path algorithm, Desig of Parallel Algorithms Detailed Course Outline Introduction to Algorithm Analysis, Fundamentals of Analysis of Algorithm Efficiency: Big Oh, Big Omega, and Big Theta notations. Rates of growth: worst, best, and average analysis Design and Analysis of Searching and Sorting Algorithms: 	gn and Analysis Allocated Time 3 Hours 3Hours
Weeks Week1 Week2	binomial coefficients, All-pairs shortest path algorithm, Desig of Parallel Algorithms Detailed Course Outline Introduction to Algorithm Analysis, Fundamentals of Analysis of Algorithm Efficiency: Big Oh, Big Omega, and Big Theta notations. Rates of growth: worst, best, and average analysis Design and Analysis of Searching and Sorting Algorithms: Optimal searching and sorting algorithms (linear search, binary search, Insertion sort, merge sort button-up sort,	gn and Analysis Allocated Time 3 Hours 3Hours
Weeks Week1 Week2 Week3	binomial coefficients, All-pairs shortest path algorithm, Desig of Parallel Algorithms Iencing Detailed Course Outline Introduction to Algorithm Analysis, Fundamentals of Analysis of Algorithm Efficiency: Big Oh, Big Omega, and Big Theta notations. Rates of growth: worst, best, and average analysis Design and Analysis of Searching and Sorting Algorithms: Optimal searching and sorting algorithms (linear search, binary search, Insertion sort, merge sort button-up sort, selection sort etc)	gn and Analysis Allocated Time 3 Hours 3Hours 3 Hours
Weeks Week1 Week2 Week3	binomial coefficients, All-pairs shortest path algorithm, Desig of Parallel Algorithms Introduction to Algorithm Analysis, Fundamentals of Analysis of Algorithm Efficiency: Big Oh, Big Omega, and Big Theta notations. Rates of growth: worst, best, and average analysis Design and Analysis of Searching and Sorting Algorithms: Optimal searching and sorting algorithms (linear search, binary search, Insertion sort, merge sort button-up sort, selection sort etc) Priority queues and heaps, heapsort, Quicksort, Sorting in	gn and Analysis Allocated Time 3 Hours 3Hours 3 Hours
Weeks Week1 Week2 Week3	binomial coefficients, All-pairs shortest path algorithm, Desig of Parallel Algorithms Iencing Detailed Course Outline Introduction to Algorithm Analysis, Fundamentals of Analysis of Algorithm Efficiency: Big Oh, Big Omega, and Big Theta notations. Rates of growth: worst, best, and average analysis Design and Analysis of Searching and Sorting Algorithms: Optimal searching and sorting algorithms (linear search, binary search, Insertion sort, merge sort button-up sort, selection sort etc) Priority queues and heaps, heapsort, Quicksort, Sorting in linear time. Recurrence relations and their solution, Analysis of Divide-and-Conquer Algorithms: Analyzing	gn and Analysis Allocated Time 3 Hours 3Hours 3 Hours
Weeks Week1 Week2 Week3	binomial coefficients, All-pairs shortest path algorithm, Desig of Parallel Algorithms Detailed Course Outline Introduction to Algorithm Analysis, Fundamentals of Analysis of Algorithm Efficiency: Big Oh, Big Omega, and Big Theta notations. Rates of growth: worst, best, and average analysis Design and Analysis of Searching and Sorting Algorithms: Optimal searching and sorting algorithms (linear search, binary search, Insertion sort, merge sort button-up sort, selection sort etc) Priority queues and heaps, heapsort, Quicksort, Sorting in linear time. Recurrence relations and their solution,	gn and Analysis Allocated Time 3 Hours 3Hours 3 Hours

Week6 and 7	Analysis of Transform-and-Conquer Algorithms, Analysis	6 Hours
	of Brute Force Algorithms	
	Continuous Assignment (20marks)	
Week8, 9 and 10	Space and Time Tradeoffs, Dynamic Programming, Design	9 Hours
	and Analysis of Graph Algorithms: Depth-first traversal	
	algorithms, Breadth-first traversal algorithms, Minimum	
	spanning tree, Shortest path algorithms,	
Week 11, 12, 13 and	Advanced Designing Techniques: Dynamic Programming	12 Hours
14	and Greedy Algorithms: Traveling salesperson approximation, Fibonacci numbers and binomial coefficients, All-pairs shortest path algorithm, Design and Analysis of Parallel Algorithms	
Recommended Read	ing Material	

- 1. T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms, McGraw-Hill, New York, NY, 1992.
- 2. E. Horowitz, S. Sahni, and S. Rajasekaran, Fundamentals of Computer Algorithms, W. H. Freeman and Co., New York, NY, 1998.
- 3. G. Rawlins, Compared to What: An Introduction to the Analysis of Algorithms, W. H. Freeman and Co., New York, NY, 1992.
- 4. S. Sahni, Data Structures, Algorithms, and Applications in Java, McGraw-Hill, NY, 2000.

CSC313 – Operations Research (3 Units)

	FEDERAL UNIVERSITY LOKOJA		
	COURSE OUTLINE		
Faculty	Sciences		
Department	Computer Science		
Course Title	Operations Research		
Year of Study	III		
Course Code	CSC313		
Credit Hours	3		
Contact Hours	45		
Pre-requisite(s)	Nil		
Mode of Delivery	Classroom Lectures		
	Laboratory Practical Sessions		
Mode of Assessment		Weight%	
Continuous Assessmen	Continuous Assessment 40%		
Final Examination			
Total		100%	
	Dr (Mrs) Toire Koloio	10070	
	Course Lecturers Dr (Mrs) Taiwo Kolajo		
and Instructor(s)	Laboratory Instructors		
Course Description	Operations research helps in solving problems in different environments that		
	needs decisions. The course convers topics that include linear programming,		
	Transportation, Assignment, and CPM/ MSPT techniques. Analyti		
	techniques and computer packages will be used to solve pro-	oblems facing	

students' problem-solving skill by subjecting them to real life probleguide them through formulation of their solutions. Course Objectives This course would enable the understanding of the following: To impart knowledge in concepts and tools of Operations Res. To understand mathematical models used in Operations Res. To use quantitative methods and techniques for effective de making. To apply these techniques constructively to make effective 1 decisions Learning Outcomes At the end of the course, students will be able to: Understand the characteristics of different types of d making environments and the appropriate decision approaches and tools to be used in each type. Solve Linear Programming Problems Build and solve Transportation Models and Assignment M Understand the usage of game theory and Simulation for Business Problems. Design new simple models, like: CPM, MSPT to improve -making and develop critical thinking and objective and decision problems. Implement practical cases by using TORA, WinQSB Teaching and The class will meet for three hours each week. Class time will be us combination of Lectures, Recitations, Tutorials and Laboratory Sessions. Key concepts would be taught during instructor-led session the Laboratory sessions will be based on problem-solving using c software packages like TORA, WinQSB, etc. Detailed Course Content Course for Upp. Integret Programming, Project Management, Software for LPP, Illustrative Applications of Network Analysis and Networks - Preliminary Definitions, Maximum Flow in the Software for LPP. Intet PModels, Graphical Solution of LPP, Method,		business managers in decision environments. The course aims at improving
guide them through formulation of their solutions. Course Objectives This course would enable the understanding of the following: I. To impart knowledge in concepts and tools of Operations Res. 3. To use quantitative methods and techniques for effective de making. 4. To apply these techniques constructively to make effective I decisions 4. To apply these techniques constructively to make effective I decisions Learning Outcomes At the end of the course, students will be able to: 1. Understand the characteristics of different types of d making environments and the appropriate decision approaches and tools to be used in each type. 2. Solve Linear Programming Problems 3. Build and solve Transportation Models and Assignment M 4. Understand the usage of game theory and Simulation for Business Problems. 5. Design new simple models, like: CPM, MSPT to improvemaking and develop critical thinking and objective and decision problems. 6. Implement practical cases by using TORA, WinQSB Teaching Learning and Detailed Course Introduction to Operations Research: The Origin and Applications of Lecures, Recitations, Tutorials and Laboratory Sessions will be based on problem-solving using c software packages like TORA, WinQSB, etc. Detailed Course Course (LIP): The LP Models, Graphical Solution of LP, Method, Initial Solution for General Constraints, Information in the Software for LIPP, Illustrative Applications of LPP. Network Analysis and Networks - Preliminary Definitions, Maximu		
Course Objectives This course would enable the understanding of the following: To impart knowledge in concepts and tools of Operations Resc. To understand mathematical models used in Operations Resc. To use quantitative methods and techniques for effective de making. To apply these techniques constructively to make effective ledecisions Learning Outcomes At the end of the course, students will be able to: Understand the characteristics of different types of d making environments and the appropriate decision approaches and tools to be used in each type. Solve Linear Programming Problems Build and solve Transportation Models and Assignment M. Understand the usage of game theory and Simulation for Business Problems. Design new simple models, like: CPM, MSPT to improve a decision problems. Implement practical cases by using TORA, WinQSB Teaching and the class will meet for three hours each week. Class time will be us combination of Lectures, Recitations, Tutorials and Laboratory T Sessions. Key concepts would be taught during instructor-led session the Laboratory sessions will be based on problem-solving using c software packages like TORA, WinQSB, etc. Detailed Course Introduction to Operations Research: The Origin and Applica Operations Research. Linear Progr Problems (LLP): The LP Models, Graphical Solution of LPP, Method, Initial Solution for General Constraints, Information in the Software for Operations Research. Linear Progr Problems, Suma Comparity, Software for Operations Research. Linear Progr Problems (LLP): The LP Models, Graphical Solution of LPP, Method, Initial Solution for General Constraints, Information in th		
1. To impart knowledge in concepts and tools of Operations Res 2. To understand mathematical models used in Operations Ress 3. To use quantitative methods and techniques for effective de making. 4. To apply these techniques constructively to make effective I decisions Learning Outcomes At the end of the course, students will be able to: 1. Understand the characteristics of different types of d making environments and the appropriate decision approaches and tools to be used in each type. 2. Solve Linear Programming Problems 3. Build and solve Transportation Models and Assignment M 4. Understand the usage of game theory and Simulation for Business Problems. 5. Design new simple models, like: CPM, MSPT to improve a decision problems. 6. Implement practical cases by using TORA, WinQSB Teaching and the class will meet for three hours each week. Class time will be us combination of Lectures, Recitations, Tutorials and Laboratory I Sessions. Key concepts would be taught during instructor-led session the Laboratory session will be based on problem-solving using a software packages like TORA, WinQSB, etc. Detailed Course Introduction to Operations Research: The Origin and Applice Operations Research, System Modelling Principles, Algorithm Ef and Complexity, Software for Operations Research. Linear Progr Problems (LLP): The LP Models, Graphical Solution of LPP, Metwork Analysis, and Networks - Preliminary Definitions, Maximum Flow in Nd Minimum Cost Network Flow Problem, Network Connectivity, Shot More for Upery Illustrative Applications of N	Course Objectives	
2. To understand mathematical models used in Operations Ress. 3. To use quantitative methods and techniques for effective de making. 4. To apply these techniques constructively to make effective l decisions Learning Outcomes At the end of the course, students will be able to: 1. Understand the characteristics of different types of d making environments and the appropriate decision approaches and tools to be used in each type. 2. Solve Linear Programming Problems 3. Build and solve Transportation Models and Assignment M 4. Understand the usage of game theory and Simulation for Business Problems. 5. Design new simple models, like: CPM, MSPT to improvemaking and develop critical thinking and objective and decision problems. 6. Implement practical cases by using TORA, WinQSB Teaching Learning and The class will meet for three hours each week. Class time will be us combination of Lectures, Recitations, Tutorials and Laboratory I Sessions. Key concepts would be taught during instructor-led session the Laboratory sessions will be based on problem-solving using c software packages like TORA, WinQSB, etc. Detailed Course Introduction to Operations Research. The Origin and Applice operations Research, System Modelling Principles, Algorithm Ef and Complexity, Software for Operations Research. Linear Progr Problems, (LLP): The LP Models, Graphical Solution of LPP, Method, Initial Solution for General Constraints, Information in the Software for LPP, Illustrative Applications of Network Analysis and Networks - Preliminary Defi	Course Objectives	
3. To use quantitative methods and techniques for effective de making. 4. To apply these techniques constructively to make effective l decisions Learning Outcomes At the end of the course, students will be able to: Understand the characteristics of different types of d making environments and the appropriate decision: approaches and tools to be used in each type. Solve Linear Programming Problems Build and solve Transportation Models and Assignment M Understand the usage of game theory and Simulation for Business Problems. Design new simple models, like: CPM, MSPT to improve a making and develop critical thinking and objective and decision problems. Implement practical cases by using TORA, WinQSB Teaching and The class will meet for three hours each week. Class time will be us combination of Lectures, Recitations, Tutorials and Laboratory I Sessions. Key concepts would be taught during instructor-led session the Laboratory sessions will be based on problem-solving using c software packages like TORA, WinQSB, etc. Detailed Course Introduction to Operations Research: The Origin and Applice Operations Research: System Modelling Principles, Algorithm Ef and Complexity, Software for Operations Research: Interer Progr Problems (LLP): The LP Models, Graphical Solution of LPP, Method, Initial Solution for General Constraints, Information in the Software for LPP, Illustrative Applications of Network Analysis, and Networks - Preliminary Definitions, Maximum Flow in Nu Minimum Cost Network Flow Problem, Network Connectivity, Short Problem, Dynamic Programming, Projeet Management, Software for Operations of Network Analysis, Programming: Fundamental Concepts, Typical Integer Progr Problems, Zero-One (0-1) Model Formulations, Branc		
making. 4. To apply these techniques constructively to make effective I decisions Learning Outcomes At the end of the course, students will be able to: Understand the characteristics of different types of d making environments and the appropriate decision approaches and tools to be used in each type. Solve Linear Programming Problems Build and solve Transportation Models and Assignment M Understand the usage of game theory and Simulation for Business Problems. Design new simple models, like: CPM, MSPT to improve — making and develop critical thinking and objective and decision problems. Implement practical cases by using TORA, WinQSB Teaching and The class will meet for three hours each week. Class time will be us combination of Lectures, Recitations, Tutorials and Laboratory I Sessions. Key concepts would be taught during instructor-led session the Laboratory sessions will be based on problem-solving using c software packages like TORA, WinQSB, etc. Detailed Course Introduction to Operations Research: The Origin and Applice Operations Research, System Modelling Principles, Algorithm Ef and Complexity, Software for Operations Research. Linear Progr Problems (LLP): The LP Models, Graphical Solution of LPP, Method, Initial Solution for General Constraints, Information in the Software for LPP, Illustrative Applications of Network Analysis, and Networks - Preliminary Definitions, Maximum Flow in Nú Minimum Cost Network Flow Problem, Network Connectivity, Short Problem, Dynamic Programming, Project Management, Softw Network Analysis, Illustrative Applications of Network Analysis, Programming: Fundamental Concepts, Typical Integer Progrer Programming, Project Management, Softw Network Analysis, Softwa		
4. To apply these techniques constructively to make effective I decisions Learning Outcomes At the end of the course, students will be able to: 1. Understand the characteristics of different types of d making environments and the appropriate decision approaches and tools to be used in each type. 2. Solve Linear Programming Problems 3. Build and solve Transportation Models and Assignment M 4. Understand the usage of game theory and Simulation for Business Problems. 5. Design new simple models, like: CPM, MSPT to improvemaking and develop critical thinking and objective and decision problems. 6. Implement practical cases by using TORA, WinQSB The class will meet for three hours each week. Class time will be us combination of Lectures, Recitations, Tutorials and Laboratory I Sessions. Key concepts would be taught during instructor-led session the Laboratory sessions will be based on problem-solving using c software packages like TORA, WinQSB, etc. Detailed Course Course Method, Initial Solution for General Constraints, Information in the Software for LPP, Illustrative Applical Solution of LPP, Method, Initial Solution for General Constraints, Information in the Software for LPP, Illustrative Applications of Network Analysis, Programming: Fundamental Concepts, Typical Integer Progrep Problem, Stero of Network Analysis, Programming: Projetm, Maximum Flow in Not Minimum Cost Network Flow Problem, Network Connectivity, Short Problem, Dynamic Programming, Project Management, Softw Network Analysis, Programming: Projet Management, Softw Network Analysis, Programming: Fundamental Concepts, Typical Integer Progrep Problem, Stero of Network Analysis, Propolem, Stero (D-1) Model Formulations, Branch		
decisions Learning Outcomes At the end of the course, students will be able to: Understand the characteristics of different types of d making environments and the appropriate decision-approaches and tools to be used in each type. Solve Linear Programming Problems Build and solve Transportation Models and Assignment M Understand the usage of game theory and Simulation for Business Problems. Design new simple models, like: CPM, MSPT to improve a -making and develop critical thinking and objective and decision problems. Implement practical cases by using TORA, WinQSB Teaching and The class will meet for three hours each week. Class time will be us combination of Lectures, Recitations, Tutorials and Laboratory Issessions. Key concepts would be taught during instructor-led session the Laboratory sessions will be based on problem-solving using cosoftware packages like TORA, WinQSB, etc. Detailed Course Course Course (LLP): The LP Models, Graphical Solution of LPP, Method, Initial Solution for General Constraints, Information in the Software for LPP, Illustrative Applications of LPP. Network Analysis and Networks - Preliminary Definitions, Maximum Flow in No Minimum Cost Network Flow Problem, Network Connectivity, Short Problem, Dynamic Programming, Project Management, Softw Network Analysis, Illustrative Applications of Network Analysis. Programming: Fundamental Concepts, Typical Integer Programming: Fundamental Concept regramming, Illustrative Application, Software for Integer Programming, Illustrative Application, Software for Integer Programming, Illustrative Application, Software for Integer Programming, Illustrative Application of Simple Q Systems, Software for Oueueing Models, Basic Elements of Q Systems, Soft		making.
Learning Outcomes At the end of the course, students will be able to: 1. Understand the characteristics of different types of d making environments and the appropriate decision approaches and tools to be used in each type. 2. Solve Linear Programming Problems 3. Build and solve Transportation Models and Assignment M 4. Understand the usage of game theory and Simulation for Business Problems. 5. Design new simple models, like: CPM, MSPT to improve a decision problems. 6. Implement practical cases by using TORA, WinQSB Teaching and Learning The class will meet for three hours each week. Class time will be us combination of Lectures, Recitations, Tutorials and Laboratory I Sessions. Key concepts would be taught during instructor-led session the Laboratory sessions will be based on problem-solving using c software packages like TORA, WinQSB, etc. Detailed Course Content Introduction to Operations Research. The Origin and Applica Operations Research. System Modelling Principles, Algorithm Ef and Complexity, Software for Operations of LPP. Network Analysis and Networks - Preliminary Definitions, Maximum Flow in Ne Minimum Cost Network Flow Problem, Network Connectivity, Short Problem, Dynamic Programming, Project Management, Softw Network Analysis, Illustrative Applications of Network Analysis. Programming: Fundamental Concepts, Typical Integer Progr Problems, Zero-One (0–1) Model Formulations, Branch-and-Bound, Planes and Facets, Cover Inequalities, Lagrangian Relaxation, Generation, Softwa		4. To apply these techniques constructively to make effective business
 I. Understand the characteristics of different types of d making environments and the appropriate decision approaches and tools to be used in each type. 2. Solve Linear Programming Problems 3. Build and solve Transportation Models and Assignment M 4. Understand the usage of game theory and Simulation for Business Problems. 5. Design new simple models, like: CPM, MSPT to improve — making and develop critical thinking and objective ana decision problems. 6. Implement practical cases by using TORA, WinQSB Teaching and The class will meet for three hours each week. Class time will be us combination of Lectures, Recitations, Tutorials and Laboratory I Sessions. Key concepts would be taught during instructor-led session the Laboratory sessions will be based on problem-solving using costfware packages like TORA, WinQSB, etc. Detailed Course Introduction to Operations Research: The Origin and Applice Operations Research, System Modelling Principles, Algorithm Ef and Complexity, Software for Operations Glubtion of LPP, Software for LPP, Illustrative Applications of LPP. Network Analysis and Networks - Preliminary Definitions, Maximum Flow in Not Minimum Cost Network Flow Problem, Network Connectivity, Short Problem, Dynamic Programming, Project Management, Software For Cone (0–1) Model Formulations, Branch-and-Bound, Planes and Facets, Cover Inequalities, Lagrangian Relaxation, Generation, Software for Queueing Models: Basic Elements of Q Systems, Arrival and Service Patterns, Analysis of Simple Q Systems, Software for Queueing Models. Basic Elements of Q Systems, Software for Queueing Models. 		decisions
 I. Understand the characteristics of different types of d making environments and the appropriate decision approaches and tools to be used in each type. 2. Solve Linear Programming Problems 3. Build and solve Transportation Models and Assignment M 4. Understand the usage of game theory and Simulation for Business Problems. 5. Design new simple models, like: CPM, MSPT to improve — making and develop critical thinking and objective ana decision problems. 6. Implement practical cases by using TORA, WinQSB Teaching and The class will meet for three hours each week. Class time will be us combination of Lectures, Recitations, Tutorials and Laboratory I Sessions. Key concepts would be taught during instructor-led session the Laboratory sessions will be based on problem-solving using costfware packages like TORA, WinQSB, etc. Detailed Course Introduction to Operations Research: The Origin and Applice Operations Research, System Modelling Principles, Algorithm Ef and Complexity, Software for Operations Glubtion of LPP, Software for LPP, Illustrative Applications of LPP. Network Analysis and Networks - Preliminary Definitions, Maximum Flow in Not Minimum Cost Network Flow Problem, Network Connectivity, Short Problem, Dynamic Programming, Project Management, Software For Cone (0–1) Model Formulations, Branch-and-Bound, Planes and Facets, Cover Inequalities, Lagrangian Relaxation, Generation, Software for Queueing Models: Basic Elements of Q Systems, Arrival and Service Patterns, Analysis of Simple Q Systems, Software for Queueing Models. Basic Elements of Q Systems, Software for Queueing Models. 	Learning Outcomes	At the end of the course, students will be able to:
making environments and the appropriate decision- approaches and tools to be used in each type. 2. Solve Linear Programming Problems 3. Build and solve Transportation Models and Assignment M 4. Understand the usage of game theory and Simulation for Business Problems. 5. Design new simple models, like: CPM, MSPT to improve -making and develop critical thinking and objective and decision problems. 6. Implement practical cases by using TORA, WinQSB Teaching Learning and The class will meet for three hours each week. Class time will be us combination of Lectures, Recitations, Tutorials and Laboratory I Sessions. Key concepts would be taught during instructor-led session the Laboratory sessions will be based on problem-solving using c software packages like TORA, WinQSB, etc. Detailed Content Course Introduction to Operations Research: The Origin and Applicat Operations Research, System Modelling Principles, Algorithm Ef and Complexity, Software for Operations Research. Linear Progr Problems (LLP): The LP Models, Graphical Solution of LPP, Network Analysis and Networks - Preliminary Definitions, Maximum Flow in Net Minimum Cost Network Flow Problem, Network Connectivity, Short Problem, Dynamic Programming, Projeet Management, Softw Network Analysis, Illustrative Applications of Network Analysis, Programming: Fundamental Concepts, Typical Integer Progr Problems, Zero-One (0–1) Model Formulations, Branch-and-Bound, Planes and Facets, Cover Inequalities, Lagrangian Relaxation, Generation, Software for Integer Programming, Illustrative Applicat Dystems, Arrival and Service Patterns, Analysis of Simple Q Systems, Arrival and Service Patterns,	8	1. Understand the characteristics of different types of decision-
approaches and tools to be used in each type. 2. Solve Linear Programming Problems 3. Build and solve Transportation Models and Assignment M 4. Understand the usage of game theory and Simulation for Business Problems. 5. Design new simple models, like: CPM, MSPT to improve a making and develop critical thinking and objective and decision problems. 6. Implement practical cases by using TORA, WinQSB Teaching and Learning and The class will meet for three hours each week. Class time will be us combination of Lectures, Recitations, Tutorials and Laboratory I Sessions. Key concepts would be taught during instructor-led session the Laboratory sessions will be based on problem-solving using c software packages like TORA, WinQSB, etc. Detailed Course Introduction to Operations Research: The Origin and Applica Operations Research, System Modelling Principles, Algorithm Ef and Complexity, Software for Operations Research. Linear Progr Problems (LLP): The LP Models, Graphical Solution of LPP, Method, Initial Solution for General Constraints, Information in the Software for LPP, Illustrative Applications of LPP. Network Analysis and Networks - Preliminary Definitions, Maximum Flow in NM Minimum Cost Network Flow Problem, Network Connectivity, Short Problem, Dynamic Programming, Project Management, Softw Network Analysis, Illustrative Applications of Network Analysis. Programming: Fundamental Concepts, Typical Integer Progr Problems, Zero-One (0–1) Model Formulations, Branch-and-Bound, Planes and Facets, Cover Inequalities, Lagrangian Relaxation, Generation, Software for Integer		
 2. Solve Linear Programming Problems 3. Build and solve Transportation Models and Assignment M 4. Understand the usage of game theory and Simulation for Business Problems. 5. Design new simple models, like: CPM, MSPT to improve a -making and develop critical thinking and objective and decision problems. 6. Implement practical cases by using TORA, WinQSB Teaching and The class will meet for three hours each week. Class time will be us combination of Lectures, Recitations, Tutorials and Laboratory I Sessions. Key concepts would be taught during instructor-led session the Laboratory sessions will be based on problem-solving using co- software packages like TORA, WinQSB, etc. Detailed Course Introduction to Operations Research: The Origin and Applica Operations Research, System Modelling Principles, Algorithm Eff and Complexity, Software for Operations Research. Linear Progr. Problems (LLP): The LP Models, Graphical Solution of LPP, S Method, Initial Solution for General Constraints, Information in the 7 Software for LPP, Illustrative Applications of LPP. Network Analysis and Networks - Preliminary Definitions, Maximum Flow in No Minimum Cost Network Flow Problem, Network Connectivity, Short Problem, Dynamic Programming, Project Management, Softw Network Analysis, Illustrative Applications of Network Analysis, Programming: Fundamental Concepts, Typical Integer Progr Problems, Zero-One (0–1) Model Formulations, Branch-and-Bound, Planes and Facets, Cover Inequalities, Lagrangian Relaxation, Generation, Software for Integer Programming, Illustrative Applicat Integer Programming. Queueing Models: Basic Elements of Q Systems, Arrival and Service Patterns, Analysis of Simple Q Systems, Software for Queueing Models, Illustrative Applicat Integer Programming. Queueing Models, Illustrative Applicat Queueing Models 		
 Build and solve Transportation Models and Assignment M Understand the usage of game theory and Simulation for Business Problems. Design new simple models, like: CPM, MSPT to improve a- making and develop critical thinking and objective and decision problems. Implement practical cases by using TORA, WinQSB Teaching and The class will meet for three hours each week. Class time will be us combination of Lectures, Recitations, Tutorials and Laboratory I Sessions. Key concepts would be taught during instructor-led session the Laboratory sessions will be based on problem-solving using c software packages like TORA, WinQSB, etc. Detailed Course Content Course Content Sequencing 		
 4. Understand the usage of game theory and Simulation for Business Problems. 5. Design new simple models, like: CPM, MSPT to improve a- making and develop critical thinking and objective and decision problems. 6. Implement practical cases by using TORA, WinQSB Teaching and The class will meet for three hours each week. Class time will be us combination of Lectures, Recitations, Tutorials and Laboratory I Sessions. Key concepts would be taught during instructor-led session the Laboratory sessions will be based on problem-solving using cr software packages like TORA, WinQSB, etc. Detailed Course Introduction to Operations Research: The Origin and Applica Operations Research, System Modelling Principles, Algorithm Ef and Complexity, Software for Operations Research. Linear Progr Problems (LLP): The LP Models, Graphical Solution of LPP, Method, Initial Solution for General Constraints, Information in the Software for LPP, Illustrative Applications of LPP. Network Analysis and Networks - Preliminary Definitions, Maximum Flow in Ne Minimum Cost Network Flow Problem, Network Connectivity, Short Problem, Dynamic Programming, Project Management, Softw Network Analysis, Illustrative Applications of Network Analysis. Programming: Fundamental Concepts, Typical Integer Progr Problems, Zero-One (0–1) Model Formulations, Branch-and-Bound, Planes and Facets, Cover Inequalities, Lagrangian Relaxation, Generation, Software for Integer Programming, Illustrative Applicat Integer Programming. Queueing Models: Basic Elements of Q Systems, Arrival and Service Patterns, Analysis of Simple Q Systems, Software for Queueing Models. Illustrative Applicat Queueing Models 		
Business Problems. 5. Design new simple models, like: CPM, MSPT to improve and decision problems. 6. Implement practical cases by using TORA, WinQSB Teaching Learning and Learning The class will meet for three hours each week. Class time will be use combination of Lectures, Recitations, Tutorials and Laboratory I Sessions. Key concepts would be taught during instructor-led session the Laboratory sessions will be based on problem-solving using cosoftware packages like TORA, WinQSB, etc. Detailed Course Introduction to Operations Research: The Origin and Applicat Operations Research, System Modelling Principles, Algorithm Ef and Complexity, Software for Operations Research. Linear Progr. Problems (LLP): The LP Models, Graphical Solution of LPP, Method, Initial Solution for General Constraints, Information in the Software for LPP, Illustrative Applications of LPP. Network Analysis and Networks - Preliminary Definitions, Maximum Flow in Network Analysis, Illustrative Applications of Network Analysis. Programming: Fundamental Concepts, Typical Integer Progr Problems, Zero-One (0–1) Model Formulations, Branch-and-Bound, Planes and Facets, Cover Inequalities, Lagrangian Relaxation, Generation, Software for Integer Programming, Illustrative Applicat Integer Programming. Queueing Models: Basic Elements of Q Systems, Arrival and Service Patterns, Analysis of Simple Q Systems, Software for Queueing Models.		· · ·
5. Design new simple models, like: CPM, MSPT to improve an decision problems. 6. Implement practical cases by using TORA, WinQSB Teaching Learning and The class will meet for three hours each week. Class time will be us combination of Lectures, Recitations, Tutorials and Laboratory I Sessions. Key concepts would be taught during instructor-led session the Laboratory sessions will be based on problem-solving using constitution to Operations Research: The Origin and Applicat Operations Research, System Modelling Principles, Algorithm Eff and Complexity, Software for Operations Research. Linear Progr. Problems (LLP): The LP Models, Graphical Solution of LPP, Method, Initial Solution for General Constraints, Information in the Software for LPP, Illustrative Applications of LPP. Network Analysis and Networks - Preliminary Definitions, Maximum Flow in No Minimum Cost Network Flow Problem, Network Analysis, Programming: Fundamental Concepts, Typical Integer Programming: Fundamental Concepts, Typical Integer Programming: Fundamental Concepts, Typical Integer Programming: Fundamental Concepts, Lagrangian Relaxation, Generation, Software for Integer Programming, Illustrative Applications, Branch-and-Bound, Planes and Facets, Cover Inequalities, Lagrangian Relaxation, Generation, Software for Integer Programming, Illustrative Applications of Simple Q Systems, Arrival and Service Patterns, Analysis of Simple Q Systems, Software for Queueing Models.		
 -making and develop critical thinking and objective and decision problems. 6. Implement practical cases by using TORA, WinQSB Teaching and The class will meet for three hours each week. Class time will be us combination of Lectures, Recitations, Tutorials and Laboratory I Sessions. Key concepts would be taught during instructor-led session the Laboratory sessions will be based on problem-solving using cosoftware packages like TORA, WinQSB, etc. Detailed Course Introduction to Operations Research: The Origin and Applica Operations Research, System Modelling Principles, Algorithm Eff and Complexity, Software for Operations Research. Linear Progr. Problems (LLP): The LP Models, Graphical Solution of LPP, Method, Initial Solution for General Constraints, Information in the Software for LPP, Illustrative Applications of LPP. Network Analysis and Networks - Preliminary Definitions, Maximum Flow in Network Analysis, Programming: Fundamental Concepts, Typical Integer Progr. Problems, Zero–One (0–1) Model Formulations, Branch-and-Bound, Planes and Facets, Cover Inequalities, Lagrangian Relaxation, Generation, Software for Integer Programming, Illustrative Applicat Integer Progr. Problems, Arrival and Service Patterns, Analysis of Simple Q Systems, Arrival and Service Patterns, Analysis of Simple Q Systems, Software for Queueing Models. 		
decision problems. 6. Implement practical cases by using TORA, WinQSB Teaching Learning and The class will meet for three hours each week. Class time will be us combination of Lectures, Recitations, Tutorials and Laboratory I Sessions. Key concepts would be taught during instructor-led session the Laboratory sessions will be based on problem-solving using co- software packages like TORA, WinQSB, etc. Detailed Content Course Introduction to Operations Research: The Origin and Applice Operations Research, System Modelling Principles, Algorithm Eff and Complexity, Software for Operations Research. Linear Progr- Problems (LLP): The LP Models, Graphical Solution of LPP, Software for LPP, Illustrative Applications of LPP, Network Analysis and Networks - Preliminary Definitions, Maximum Flow in No Minimum Cost Network Flow Problem, Network Connectivity, Short Problem, Dynamic Programming, Project Management, Softw Network Analysis, Illustrative Applications of Network Analysis. Programming: Fundamental Concepts, Typical Integer Progr Problems, Zero–One (0–1) Model Formulations, Branch-and-Bound, Planes and Facets, Cover Inequalities, Lagrangian Relaxation, Generation, Software for Integer Programming, Illustrative Applica Integer Programming. Queueing Models: Basic Elements of Q Systems, Arrival and Service Patterns, Analysis of Simple Q Systems, Software for Queueing Models, Illustrative Applicat Queueing Models		5. Design new simple models, like: CPM, MSPT to improve decision
6. Implement practical cases by using TORA, WinQSB Teaching Learning and The class will meet for three hours each week. Class time will be us combination of Lectures, Recitations, Tutorials and Laboratory I Sessions. Key concepts would be taught during instructor-led session the Laboratory sessions will be based on problem-solving using co- software packages like TORA, WinQSB, etc. Detailed Content Course Introduction to Operations Research: The Origin and Applice Operations Research, System Modelling Principles, Algorithm Eff and Complexity, Software for Operations Research. Linear Progr Problems (LLP): The LP Models, Graphical Solution of LPP, Method, Initial Solution for General Constraints, Information in the Software for LPP, Illustrative Applications of LPP. Network Analysis and Networks - Preliminary Definitions, Maximum Flow in Ne Minimum Cost Network Flow Problem, Network Connectivity, Short Problem, Dynamic Programming, Project Management, Softw Network Analysis, Illustrative Applications of Network Analysis. Programming: Fundamental Concepts, Typical Integer Progr Problems, Zero-One (0–1) Model Formulations, Branch-and-Bound, Planes and Facets, Cover Inequalities, Lagrangian Relaxation, Generation, Software for Integer Programming, Illustrative Applicat Integer Programming. Queueing Models: Basic Elements of Q Systems, Arrival and Service Patterns, Analysis of Simple Q Systems, Software for Queueing Models, Illustrative Applicat Queueing Models		-making and develop critical thinking and objective analysis of
Teaching Learningand The class will meet for three hours each week. Class time will be us combination of Lectures, Recitations, Tutorials and Laboratory I Sessions. Key concepts would be taught during instructor-led session the Laboratory sessions will be based on problem-solving using c software packages like TORA, WinQSB, etc.Detailed ContentCourse Introduction to Operations Research: The Origin and Applica Operations Research, System Modelling Principles, Algorithm Ef and Complexity, Software for Operations Research. Linear Progr. Problems (LLP): The LP Models, Graphical Solution of LPP, Method, Initial Solution for General Constraints, Information in the Software for LPP, Illustrative Applications of LPP. Network Analysis and Networks - Preliminary Definitions, Maximum Flow in Not Minimum Cost Network Flow Problem, Network Connectivity, Short Problem, Dynamic Programming, Project Management, Softw Network Analysis, Illustrative Applications of Network Analysis. Programming: Fundamental Concepts, Typical Integer Progr Problems, Zero-One (0–1) Model Formulations, Branch-and-Bound, Planes and Facets, Cover Inequalities, Lagrangian Relaxation, Generation, Software for Integer Programming, Illustrative Applicat Integer Programming, Models: Basic Elements of Q Systems, Arrival and Service Patterns, Analysis of Simple Q Systems, Software for Queueing Models, Illustrative Applicat Queueing Models		decision problems.
Teaching Learningand The class will meet for three hours each week. Class time will be us combination of Lectures, Recitations, Tutorials and Laboratory I Sessions. Key concepts would be taught during instructor-led session the Laboratory sessions will be based on problem-solving using c software packages like TORA, WinQSB, etc.Detailed ContentCourse Introduction to Operations Research: The Origin and Applica Operations Research, System Modelling Principles, Algorithm Ef and Complexity, Software for Operations Research. Linear Progr. Problems (LLP): The LP Models, Graphical Solution of LPP, Method, Initial Solution for General Constraints, Information in the Software for LPP, Illustrative Applications of LPP. Network Analysis and Networks - Preliminary Definitions, Maximum Flow in Not Minimum Cost Network Flow Problem, Network Connectivity, Short Problem, Dynamic Programming, Project Management, Softw Network Analysis, Illustrative Applications of Network Analysis. Programming: Fundamental Concepts, Typical Integer Progr Problems, Zero-One (0–1) Model Formulations, Branch-and-Bound, Planes and Facets, Cover Inequalities, Lagrangian Relaxation, Generation, Software for Integer Programming, Illustrative Applicat Integer Programming, Models: Basic Elements of Q Systems, Arrival and Service Patterns, Analysis of Simple Q Systems, Software for Queueing Models, Illustrative Applicat Queueing Models		6. Implement practical cases by using TORA, WinOSB
Learningcombination of Lectures, Recitations, Tutorials and Laboratory H Sessions. Key concepts would be taught during instructor-led session the Laboratory sessions will be based on problem-solving using c software packages like TORA, WinQSB, etc.Detailed ContentCourse Introduction to Operations Research: The Origin and Applica Operations Research, System Modelling Principles, Algorithm Ef and Complexity, Software for Operations Research. Linear Progr. Problems (LLP): The LP Models, Graphical Solution of LPP, Method, Initial Solution for General Constraints, Information in the Software for LPP, Illustrative Applications of LPP. Network Analysis and Networks - Preliminary Definitions, Maximum Flow in Ne Minimum Cost Network Flow Problem, Network Connectivity, Short Problem, Dynamic Programming, Project Management, Softw Network Analysis, Illustrative Applications of Network Analysis. Programming: Fundamental Concepts, Typical Integer Progr Problems, Zero-One (0–1) Model Formulations, Branch-and-Bound, Planes and Facets, Cover Inequalities, Lagrangian Relaxation, Generation, Software for Integer Programming, Illustrative Applicat Integer Programming. Queueing Models: Basic Elements of Q Systems, Arrival and Service Patterns, Analysis of Simple Q Systems, Software for Queueing Models, Illustrative Applicat Queueing Models	Teaching and	The class will meet for three hours each week. Class time will be used for a
Sessions. Key concepts would be taught during instructor-led session the Laboratory sessions will be based on problem-solving using co- software packages like TORA, WinQSB, etc. Detailed Content Course Content Course Content Course Content Course Content Course Content Course Content Sessions. Key concepts would be taught during instructor-led session the Laboratory sessions will be based on problem-solving using co- software packages like TORA, WinQSB, etc. Introduction to Operations Research: The Origin and Applicat Operations Research, System Modelling Principles, Algorithm Ef and Complexity, Software for Operations Research. Linear Progr. Problems (LLP): The LP Models, Graphical Solution of LPP, Method, Initial Solution for General Constraints, Information in the Software for LPP, Illustrative Applications of LPP. Network Analysis and Networks - Preliminary Definitions, Maximum Flow in Network Analysis, Illustrative Applications of Network Analysis. Programming: Fundamental Concepts, Typical Integer Progr. Problems, Zero–One (0–1) Model Formulations, Branch-and-Bound, Planes and Facets, Cover Inequalities, Lagrangian Relaxation, Generation, Software for Integer Programming, Illustrative Applicat Integer Programming. Queueing Models: Basic Elements of Q Systems, Arrival and Service Patterns, Analysis of Simple Q Systems, Software for Queueing Models, Illustrative Applicat Queueing Models	e	combination of Lectures, Recitations, Tutorials and Laboratory Practical
Detailed ContentCourse ContentIntroduction to Operations Research: The Origin and Applica Operations Research, System Modelling Principles, Algorithm Ef and Complexity, Software for Operations Research. Linear Progr Problems (LLP): The LP Models, Graphical Solution of LPP, Method, Initial Solution for General Constraints, Information in the Software for LPP, Illustrative Applications of LPP. Network Analysis and Networks - Preliminary Definitions, Maximum Flow in No Minimum Cost Network Flow Problem, Network Connectivity, Short Problem, Dynamic Programming, Project Management, Softw Network Analysis, Illustrative Applications of Network Analysis. Programming: Fundamental Concepts, Typical Integer Progr Problems, Zero-One (0–1) Model Formulations, Branch-and-Bound, Planes and Facets, Cover Inequalities, Lagrangian Relaxation, Generation, Software for Integer Programming, Illustrative Applicat Integer Programming. Queueing Models: Basic Elements of Q Systems, Arrival and Service Patterns, Analysis of Simple Q Systems, Software for Queueing Models, Illustrative Applicat Queueing ModelsCourse Content Sequencing	8	Sessions. Key concepts would be taught during instructor-led sessions, while
Detailed ContentCourseIntroduction to Operations Research: The Origin and Applica Operations Research, System Modelling Principles, Algorithm Ef and Complexity, Software for Operations Research. Linear Progr. Problems (LLP): The LP Models, Graphical Solution of LPP, Method, Initial Solution for General Constraints, Information in the Software for LPP, Illustrative Applications of LPP. Network Analysis and Networks - Preliminary Definitions, Maximum Flow in Ne Minimum Cost Network Flow Problem, Network Connectivity, Short Problem, Dynamic Programming, Project Management, Softw Network Analysis, Illustrative Applications of Network Analysis. Programming: Fundamental Concepts, Typical Integer Progr Problems, Zero–One (0–1) Model Formulations, Branch-and-Bound, Planes and Facets, Cover Inequalities, Lagrangian Relaxation, Generation, Software for Integer Programming, Illustrative Applica Integer Programming. Queueing Models: Basic Elements of Q Systems, Arrival and Service Patterns, Analysis of Simple Q Systems, Software for Queueing Models, Illustrative Applicat Queueing ModelsCourse Content Sequencing		the Laboratory sessions will be based on problem-solving using computer
ContentOperations Research, System Modelling Principles, Algorithm Ef and Complexity, Software for Operations Research. Linear Progr. Problems (LLP): The LP Models, Graphical Solution of LPP, S Method, Initial Solution for General Constraints, Information in the T Software for LPP, Illustrative Applications of LPP. Network Analysis and Networks - Preliminary Definitions, Maximum Flow in Network Software for LPP, Illustrative Applications of Network Connectivity, Short Problem, Dynamic Programming, Project Management, Softw Network Analysis, Illustrative Applications of Network Analysis. Programming: Fundamental Concepts, Typical Integer Progr Problems, Zero–One (0–1) Model Formulations, Branch-and-Bound, Planes and Facets, Cover Inequalities, Lagrangian Relaxation, Generation, Software for Integer Programming, Illustrative Applicat Integer Programming. Queueing Models: Basic Elements of Q Systems, Arrival and Service Patterns, Analysis of Simple Q Systems, Software for Queueing Models, Illustrative Applicat Queueing ModelsCourse Content Sequencing		software packages like TORA, WinQSB, etc.
and Complexity, Software for Operations Research. Linear Progr. Problems (LLP): The LP Models, Graphical Solution of LPP, Method, Initial Solution for General Constraints, Information in the T Software for LPP, Illustrative Applications of LPP. Network Analysis and Networks - Preliminary Definitions, Maximum Flow in Net Minimum Cost Network Flow Problem, Network Connectivity, Short Problem, Dynamic Programming, Project Management, Softw Network Analysis, Illustrative Applications of Network Analysis. Programming: Fundamental Concepts, Typical Integer Progr Problems, Zero–One (0–1) Model Formulations, Branch-and-Bound, Planes and Facets, Cover Inequalities, Lagrangian Relaxation, Generation, Software for Integer Programming, Illustrative Applicat Integer Programming. Queueing Models: Basic Elements of Q Systems, Arrival and Service Patterns, Analysis of Simple Q Systems, Software for Queueing Models, Illustrative Applicat Queueing Models	Detailed Course	Introduction to Operations Research: The Origin and Application of
Problems (LLP): The LP Models, Graphical Solution of LPP, Method, Initial Solution for General Constraints, Information in the Software for LPP, Illustrative Applications of LPP. Network Analysis and Networks - Preliminary Definitions, Maximum Flow in Net Minimum Cost Network Flow Problem, Network Connectivity, Short Problem, Dynamic Programming, Project Management, Softw Network Analysis, Illustrative Applications of Network Analysis. Programming: Fundamental Concepts, Typical Integer Progra Problems, Zero–One (0–1) Model Formulations, Branch-and-Bound, Planes and Facets, Cover Inequalities, Lagrangian Relaxation, Generation, Software for Integer Programming, Illustrative Applicat Integer Programming. Queueing Models: Basic Elements of Q Systems, Arrival and Service Patterns, Analysis of Simple Q Systems, Software for Queueing Models, Illustrative Applicat Queueing Models	Content	Operations Research, System Modelling Principles, Algorithm Efficiency
Method, Initial Solution for General Constraints, Information in the T Software for LPP, Illustrative Applications of LPP. Network Analysis and Networks - Preliminary Definitions, Maximum Flow in Net Minimum Cost Network Flow Problem, Network Connectivity, Short Problem, Dynamic Programming, Project Management, Softw Network Analysis, Illustrative Applications of Network Analysis. Programming: Fundamental Concepts, Typical Integer Progr Problems, Zero–One (0–1) Model Formulations, Branch-and-Bound, Planes and Facets, Cover Inequalities, Lagrangian Relaxation, Generation, Software for Integer Programming, Illustrative Applica Integer Programming. Queueing Models: Basic Elements of Q Systems, Arrival and Service Patterns, Analysis of Simple Q Systems, Software for Queueing Models, Illustrative Applicat Queueing Models		and Complexity, Software for Operations Research. Linear Programming
Software for LPP, Illustrative Applications of LPP. Network Analysis and Networks - Preliminary Definitions, Maximum Flow in Net Minimum Cost Network Flow Problem, Network Connectivity, Short Problem, Dynamic Programming, Project Management, Softw Network Analysis, Illustrative Applications of Network Analysis. Programming: Fundamental Concepts, Typical Integer Progr Problems, Zero-One (0-1) Model Formulations, Branch-and-Bound, Planes and Facets, Cover Inequalities, Lagrangian Relaxation, Generation, Software for Integer Programming, Illustrative Applicat Integer Programming. Queueing Models: Basic Elements of Q Systems, Software for Queueing Models, Illustrative Applicat Queueing ModelsCourse Content Sequencing		Problems (LLP): The LP Models, Graphical Solution of LPP, Simplex
and Networks - Preliminary Definitions, Maximum Flow in Network Operation of Minimum Cost Network Flow Problem, Network Connectivity, Short Problem, Dynamic Programming, Project Management, Softw Network Analysis, Illustrative Applications of Network Analysis. Programming: Fundamental Concepts, Typical Integer Programos, Zero-One (0–1) Model Formulations, Branch-and-Bound, Planes and Facets, Cover Inequalities, Lagrangian Relaxation, Generation, Software for Integer Programming, Illustrative Applicat Integer Programming. Queueing Models: Basic Elements of Q Systems, Arrival and Service Patterns, Analysis of Simple Q Systems, Software for Queueing Models, Illustrative Applicat Queueing Models		
Minimum Cost Network Flow Problem, Network Connectivity, Short Problem, Dynamic Programming, Project Management, Softw Network Analysis, Illustrative Applications of Network Analysis. Programming: Fundamental Concepts, Typical Integer Progra Problems, Zero–One (0–1) Model Formulations, Branch-and-Bound, Planes and Facets, Cover Inequalities, Lagrangian Relaxation, Generation, Software for Integer Programming, Illustrative Applica Integer Programming. Queueing Models: Basic Elements of Q Systems, Arrival and Service Patterns, Analysis of Simple Q Systems, Software for Queueing Models, Illustrative Applicat Queueing Models Course Content Sequencing		
Problem, Dynamic Programming, Project Management, Softw Network Analysis, Illustrative Applications of Network Analysis. Programming: Fundamental Concepts, Typical Integer Progr Problems, Zero–One (0–1) Model Formulations, Branch-and-Bound, Planes and Facets, Cover Inequalities, Lagrangian Relaxation, Generation, Software for Integer Programming, Illustrative Applicat Integer Programming. Queueing Models: Basic Elements of Q Systems, Arrival and Service Patterns, Analysis of Simple Q Systems, Software for Queueing Models, Illustrative Applicat Queueing ModelsCourse Content Sequencing		
Network Analysis, Illustrative Applications of Network Analysis.Programming: Fundamental Concepts, Typical Integer Progr Problems, Zero-One (0-1) Model Formulations, Branch-and-Bound, Planes and Facets, Cover Inequalities, Lagrangian Relaxation, Generation, Software for Integer Programming, Illustrative Applicat Integer Programming. Queueing Models: Basic Elements of Q Systems, Arrival and Service Patterns, Analysis of Simple Q Systems, Software for Queueing Models, Illustrative Applicat Queueing ModelsCourse Content Sequencing		
Programming: Fundamental Concepts, Typical Integer Progra Problems, Zero–One (0–1) Model Formulations, Branch-and-Bound, Planes and Facets, Cover Inequalities, Lagrangian Relaxation, Generation, Software for Integer Programming, Illustrative Applica Integer Programming. Queueing Models: Basic Elements of Q Systems, Arrival and Service Patterns, Analysis of Simple Q Systems, Software for Queueing Models, Illustrative Applicat Queueing Models Course Content Sequencing		
Problems, Zero–One (0–1) Model Formulations, Branch-and-Bound, Planes and Facets, Cover Inequalities, Lagrangian Relaxation, Generation, Software for Integer Programming, Illustrative Applica Integer Programming. Queueing Models: Basic Elements of Q Systems, Arrival and Service Patterns, Analysis of Simple Q Systems, Software for Queueing Models, Illustrative Applicat Queueing Models Course Content Sequencing		
Planes and Facets, Cover Inequalities, Lagrangian Relaxation, Generation, Software for Integer Programming, Illustrative Applica Integer Programming. Queueing Models: Basic Elements of Q Systems, Arrival and Service Patterns, Analysis of Simple Q Systems, Software for Queueing Models, Illustrative Applicat Queueing Models Course Content Sequencing		
Generation, Software for Integer Programming, Illustrative Applica Integer Programming. Queueing Models: Basic Elements of Q Systems, Arrival and Service Patterns, Analysis of Simple Q Systems, Software for Queueing Models, Illustrative Applicat Queueing Models Course Content Sequencing		
Integer Programming. Queueing Models: Basic Elements of Q Systems, Arrival and Service Patterns, Analysis of Simple Q Systems, Software for Queueing Models, Illustrative Applicat Queueing Models Course Content Sequencing		
Systems, Arrival and Service Patterns, Analysis of Simple Q Systems, Software for Queueing Models, Illustrative Applicat Queueing Models Course Content Sequencing		
Systems, Software for Queueing Models, Illustrative Applicat Queueing Models Course Content Sequencing		
Queueing Models Course Content Sequencing		Systems, Software for Queueing Models, Illustrative Applications of
Course Content Sequencing		
	Course Content Seque	
weeks Detaned Course Outline Anoca	Weeks	Detailed Course Outline Allocated
Time		Time

Week1	1. Introduction to Operations Research	3 Hours
	• The Origin and Application of Operations Research	
	System Modelling Principles	
	Algorithm Efficiency and Complexity	
	Software for Operations Research	
	Illustrative applications	
	 Analytical Innovation in the Food and Agribusiness Industries, Humanitarian Relief in Natural Disasters, Mining and Social Conflicts 	
Week2,3,4	2. Linear Programming Problems	12 Hours
	The Linear Programming Model	
	 Integer and Nonlinear Models 	
	Graphical Solution of Linear Programming Problems	
	 General Definitions, Graphical Solutions, Multiple Optimal Solutions, No Optimal Solution, No Feasible Solution, General Solution Method 	
	Simplex Method	
	 Standard Form of a Linear Programming Problem, Solutions of Linear Systems 	
	Initial Solution for General Constraints	
	• Artificial Variables, The Two-Phase Method	
	• Information in the Tableau	
	 Multiple Optimal Solutions, Unbounded Solution (No Optimal Solution), Degenerate Solutions, Analyzing the Optimal Tableau: Shadow Prices 	
	Software for Linear Programming	
	Illustrative Applications	
	• Forest Pest Control Program, Aircraft and	
	Munitions Procurement, Grape Processing:	
	Materials Planning and Production	

Week5,6,7,8	3. Network Analysis	15 Hours
	Graphs and Networks: Preliminary Definitions	
	Maximum Flow in Networks	
	• Maximum Flow Algorithm, Extensions to the	
	Maximum Flow Problem	
	Minimum Cost Network Flow Problems	
	Transportation Problem	
	• Northwest Corner Rule, Minimum	
	Cost Method, Minimum	
	"Row" Cost	
	Method, Transportation Simplex Method	
	Assignment Problem and Stable Matching	
	Stable Matching	
	Capacitated Transshipment Problem	
	Network Connectivity	
	Minimum Spanning Trees, Shortest Network	
	Problem: A Variation on Minimum Spanning	
	Trees	
	Shortest Path Problems	
	• Shortest Path through an Acyclic Network,	
	Shortest Paths from Source to All Other	
	Nodes, Problems Solvable with Shortest Path Methods	
	 Dynamic Programming Labeling Method for Multi-Stage Decision 	
	Making, Tabular Method, General Recursive	
	Method .	
	Project Management	
	• Project Networks and Critical Paths, Cost	
	versus Time Trade-Offs, Probabilistic Project	
	Scheduling	
	Software for Network Analysis	
	Illustrative Applications	
	DNA Sequence Comparison Using a Shortest	
	Path Algorithm, Multiprocessor Network	
	Traffic Scheduling, Shipping Cotton from	
	Farms to Gins	
	4. Continuous Assessment I	
1		

Week9,10,11	5	Integer Programming	10 hours
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Integer Programming	10 110 115
	•	Fundamental Concepts	
	•	Typical Integer Programming Problems	
		• General Integer Problems, Zero–One (0–1)	
		Problems, Mixed Integer Problems,	
	•	Zero–One (0–1) Model Formulations	
		• Traveling Salesman Model, Knapsack	
		Model, Bin Packing Model, Set	
		Partitioning/Covering/Packing Models,	
		Generalized Assignment Model	
	•	Branch-and-Bound	
		• A Simple Example, A Basic Branch-and-	
		Bound Algorithm, Knapsack Example	
		From Basic Method to Commercial Code	
		Branching Strategies Bounding Strategies	
		Separation Rules	
		The Impact of Model Formulation	
		Representation of Real Numbers	
	•	Cutting Planes and Facets	
	•	Cover Inequalities	
	•	Lagrangian Relaxation	
		• Relaxing Integer Programming Constraints,	
		A Simple Example, The Integrality Gap, The	
		Generalized Assignment Problem, A Basic	
		Lagrangian Relaxation Algorithm, A	
		Customer Allocation Problem	
	•	Column Generation	
	•	Software for Integer Programming	
	•	Illustrative Applications	
		• Solid Waste Management, Timber Harvest	
Week12		Planning, Propane Bottling Plants	5 Hours
week12	6.	Queueing Models	5 Hours
	•	Basic Elements of Queueing Systems	
	•	Arrival and Service Patterns	
		The Exponential Distribution	
		Birth-and-Death Processes	
	٠	Analysis of Simple Queueing Systems	
		 Notation and Definitions 	
		Steady State Performance Measures	
		Practical Limits of Queueing	
	٠	Software for Queueing Models	
	•	Illustrative Applications	
		• Cost Efficiency and Service Quality in	
		Hospitals	
		Queueing Models in Manufacturing	
		Nurse Staffing Based on Queueing Models	
	7.	Continuous Assessment II	
After Week12	1.	Examination	

- Hillier, Frederick & Lieberman, "Introduction to Operations Research Concepts and Cases", 2010, 8th Ed. TMH
- 2. N.D. Vohra, "Quantitative Techniques in Management", 2010, 4th Ed.TMH.
- 3. J.K. Sharma, "Operations Research Theory and Applications 2009,4th Ed. McMillan.
- 4. Kasana, HS & Kumar, KD, "Introductory Operations Research theory and Applications", 2008, Springer.
- 5. Chakravarty, P, "Quantitative Methods for Management and Economics", 2009, 1st Ed. HPH.
- 6. Murthy, P. R., "Operations Research", 2007, 2nd Ed. ISBN (13): 978-81-224-2944-2

CSC315 - Computer Architecture and sequential programme (3 Units)

	FEDERAL UNIVERSITY LOKOJA COURSE OUTLINE	
Faculty	Sciences	
Department	Computer Science	
Course Title	Computer Architecture and sequential programme	
Year of Study	III	
Course Code	CSC315	
Credit Hours	3	
Contact Hours	36	
Pre-requisite(s)	CSC 205	
Mode of Delivery	Classroom Lectures Laboratory Practical Sessions	
Mode of Assessm	nent	Weight%
Continuous Asses	sment	40%
Final Examination	1	60%
Total		100%
Course	Mrs Oluwafemi Temitope	
Lecturers and		
Instructor(s)		
Course Description	Computer architecture is a specification detailing how a set of hardware technology standards interact to form a computer syste In short, computer architecture refers to how a computer system is what technologies it is compatible with. This course also competence performance evaluation of computer systems. The emp microprocessors, chip-multiprocessors and memory hierarchy of attention is paid to pipelining, using hardware and/or software yield high performance. This course will benefit students computer architecture concepts and mechanisms related to the des processors, and memories and explain how these concepts an interact.	em or platform. Is designed and deals with the phasis is on design. Special e techniques to to understand sign of modern
Course	This course would enable the understanding of the following:	
Objectives	5. Describe computer architecture concepts and mechanism	is related to the

[
	design of modern processors, and memories and explain how these
	concepts and mechanisms interact.
	6. Apply this understanding to new computer architecture design
	problems within the context of balancing application requirements
	against technology constraints.
	 Understand the inner workings and performance of microprocessors.
	8. Understand the concepts; registers, memory, addressing mode, physical
	memory address, assembler directive, program-controlled I/O,
	microprogrammed control.
	9. Operate with concepts and notions related to floating point systems and
	operations.
	10. Have an ability to evaluate hardware accelerator targeting at
	applications with substantial data-level parallelism.
	11. Learn software-driven techniques to match application requirements to
	available pipelined hardware in order to obtain high performance.
	12. Understand cache coherence issues.
	13. Understand the basic of shared-memory
Learning	At the end of the course, students will be able to:
C	At the end of the course, students will be able to.
Outcomes	1. Explain how computer hardware and software are being influenced by
	their architecture
	2. Understand the computer from the programmers point and understand
	the overall structure and function of a computer.
	3. Understand the concept of pipelining.
	4. Select appropriate computer systems for given application domains.
Teaching and	Classes should be for 3hrs weekly.
Learning	Contents of the course will be presented and taught (in power point format) to
	students in the classroom. Classroom presentations will be supported with
	practical demonstrations.
	Students will equally participate in group presentations and tutorial sessions.
	statents will equally participate in group presentations and tatorial sessions.
Datalla	Introduction to Digital Southers Applitute to a Computer to
Detailed	Introduction to Digital System Architecture: Computer systems components,
Course Content	Brief historical background, Architectural development and
	Styles, Computer Organisation and design, Memory hierarchy, CISC
	Architecture: Von Neuman, computer organization, characteristics, merits, and
	demerits; RISC Architecture: Havard architecture, computer organization,
	characteristics, merits, and demerits, Examples of CISC Architecture:
	INTEL80x86, and Motorola 680xx microprocessor, Generations of Intel80x86

	microprocessor. Evolution of instruction sets, Characteristics Instruction sets, Data Memory Storage formats: Little Endian 80x86 Programming models, 80x86 Addressing modes, M68000 models, M68000 Addressing modes. Intel Processor Operation Real Mode (characteristics, advantages, disadvantages, and oper 80x86 Protected Mode (characteristics, advantages, disad operating systems). 80x87 Floating Point Architecture: IEEE75 standards, 80x87 floating point model, 80x87 Instruction Set, point programming. Parallel Architecture: SIMD Architecture of architecture, SSE1-3 architectures, MMX /SSE Instruction Set	vs Big Endian, 0 Programming 1 Modes: 80x86 rating systems), Ivantages, and 4 floating point 80x87 floating of 80x86, MMX
	Basic and Intermediate Concepts.	
Course Content	Sequencing	
Weeks	Detailed Course Outline	Allocated
Week1	1. Introduction	Time 3 Hours
	Define computer Architecture	
	• Explain the Functions of various parts of the computer	
	CPU Basics	
	• Parts of the CPU	
Week2-4	2. Memory Organization	9 Hours
	Main memory	
	• Cache	
	Instruction cycle	
	3. Computer Architecture	
	Von Neumann	
	Havard Architecture	
Week5-6	4. Addressing Mode	6 Hours
	5. CISC and RISC	
	6. Continuous Assessment I	
Week7-8	7. Intel 80x86 Architecture,	6 hours
	8. Motorolla 68000, Interrupts	
Week9,10,11,12	9. ISA	12 Hours
	10. Parallel Arcitecture	
	11. Pipelinning	
	12. Continuous Assessment II	
After Week 12	13. Examinations	

7. William Stallings. (2016). Computer Organization and architecture designing for performance. Tenth edition. ISBN 13:978-0-13-410161-3

CSC319 – Information Technology Law (3 Units)

	FEDERAL UNIVERSITY LOKOJA COURSE OUTLINE	
Faculty	Sciences	
Department	Computer Science	
Course Title	Information Technology Law	
Year of Study	III	
Course Code	CSC319	
Credit Hours	3	
Contact Hours	36	
Pre-requisite(s)		
Mode of Delivery	Classroom Lectures Term Paper Presentations (Group Work) Laboratory Practical Sessions	
Mode of Assessme		Weight%
Continuous Assessn		40%
Final Examination		60%
Total		100%
Course Lecturers	Dr. Emeka Emmanuel Ogbuju	
and Instructor(s) Course	-Laboratory Instructors This course brings to fore the numerous challenges of Informatic	
Description	on the areas of cybercrimes, intellectual property, information and critical infrastructure security, professional ethics and IT policy legislation. It discusses the concepts, tools and techniques needed to combat the social menace caused by the misuse of the computer and internet technology. The course also covers the roles of government agencies both at the local and international levels to address the challenges. Though CSC319 is an elective course, the knowledge gleaned from participating in it will assist and equip students to stay safe and practice computing within relevant legal frameworks.	
Course Objectives	 By the end of this course, students are expected to have the following knowledge/skills: a) Practice computing with the requisite set of legal knowledge and ethics required in the discharge of their professional duties b) Acquire Information Technology security skills necessary for both offline and online activities c) Develop computer/software acquisition/development contracts d) Become national and international digital advocates for economic growth and development using the computer and internet technology 	
Learning Outcomes	At the end of the course, students will be able to:	h
Teaching and Learning	The class will meet for three hours each week. Class time will combination of Lectures, Group project Presentation, Tutorials a Practical Sessions. Key concepts would be taught during instructo	nd Laboratory

	while the Laboratory sessions will be based on problem-solving b groups using different ethical hacking tools.	y major class
Detailed Course Content	Basic netiquettes. Introduction to computer ethics, Personal code ethics and social values, Code of ethics and professional cond context). Introduction to intellectual property protection: Copy trademark, Introduction to digital signature and electronic signatur legislation, Computer contracts, Introduction to cybercrimes, of cybercrimes. International Cybercrime Initiatives: Budapest Co Cybercrime; Cybercrime initiatives of the D-8 countries, IT lay Brazil, Russia, India, United Kingdom, and USA. Cybercrime survi lab sessions), Malware attacks, Scams. General discussion of Cybercrime (prohibition, prevention, detection, response, invest prosecution of cybercrimes; and for other related matters) Act 20 Cybesecurity Strategy. Online privacy and data protection, categori privacy violation methods. Cyber security guide: the action phases, to Ethical Hacking (with lab sessions on Penetration Testin class/group work on development of a cyber-security frame information system. Presentation of Group Work. Tutorial and Course Examination	luct (Nigeria right, patent res. IT Policy categories of onvention or ws in China, val tips (with the Nigerian stigation and 015, National es of privacy, Introduction g). Practical work for an
Course Content See	quencing	
Weeks	Detailed Course Outline	Allocated Time
Week1	Basic netiquettes. Introduction to computer ethics, Personal code of computer ethics and social values	3 Hours
Week2,3,4	Code of ethics and professional conduct (Nigeria context). Introduction to intellectual property protection: Copyright, patent, trademark, Introduction to digital signature and electronic signatures. IT Policy legislation, Computer contracts, Introduction to cybercrimes, categories of cybercrimes. International Cybercrime Initiatives: Budapest Convention on Cybercrime; Cybercrime initiatives of the D-8 countries,	9 Hours
Week,5,6	IT laws in China, Brazil, Russia, India, United Kingdom, and USA. Cybercrime survival tips (with lab sessions), Malware attacks, Scams. General discussion of the Nigerian Cybercrime (prohibition, prevention, detection, response, investigation and prosecution of cybercrimes; and for other related matters) Act 2015, National Cybersecurity Strategy.	6 Hours
Week7,8	Online privacy and data protection, categories of privacy, privacy violation methods. Cyber security guide: the action phases, Introduction to Ethical Hacking (with lab sessions on Penetration Testing). Practical class/group work on development of a cyber-security framework for an information system.	6 hours
Week9,10,11,12	Presentation of Group Work. Tutorial and Revision for Course Examination Project Implementations and Presentations Continuous Assessment II: Written Test	12 Hours
After Week 12	Examinations	
Recommended Rea	nding Material	
-	Cybercrime (prohibition, prevention, detection, response, inves on of cybercrimes; and for other related matters) Act 2015	stigation and
*	Cybersecurity Strategy.	

2. National Cybersecurity Strategy.

CSC 321 - System Analysis and Design (3 Units)

FEDERAL UNIVERSITY LOKOJA

	COURSE OUTLINE		
Faculty	Sciences		
Department	Computer Science		
Course Title	System Analysis and Design		
Year of Study	III		
Course Code	CSC321		
Credit Hours	3		
Contact Hours	36		
Pre-requisite(s)	Nil		
Mode of Delivery	Classroom Lectures Laboratory Practical Sessions		
Mode of Assessment	t	Weight%	
Continuous Assessme		40%	
Final Examination		60%	
Total		100%	
Course Lecturers	Fati Oiza Ochepa (Mrs)	100 /0	
and Instructor(s)	Mr. Paulinus Umeh -Laboratory Instructor		
Course	This course is a very important core course in computing pro	ofession which	
Description	every practitioner will always use throughout the development of any		
	system. The concepts, tools and techniques to be learnt will b	•	
	student's computing career. We shall cover all the areas		
	analysis, design and implementation of an information system		
Course Objectives	This course would enable the understanding of the following:		
	1. Understanding and application of the concepts of the system		
	development lifecycle	4	
	 Application of the analysis and design concepts development problem 	to a system	
	3. Application of the system development process	s flow using	
	appropriate and standardized set of diagrams/drawing	-	
	4. Acquisition of relevant people and projects s		
	implementation of a system.	kins for the	
	5. The process of transfer of human knowledge to a ma	chine.	
Learning	At the end of the course, students will be able to:		
Outcomes	7. Define Planning, Analysis and Design.		
	8. Select appropriate software development methodo	logy.	
	9. Develop Use case analysis of practical problems.		

	10. Apply the various categories of software	development	
	requirements.		
	11. Design and implement data flow diagrams.		
	12. Apply System Development Lifecycle in build	ling a software	
	project.		
	13. Develop a software, coding with C++, VB.Net, J.	AVA.	
Teaching and	The class will meet for three hours each week. Class time w	ill be used for a	
Learning	combination of Lectures and Tutorials. Key concepts w	ould be taught	
	during instructor-led sessions. Lecture will be delivered	l using guided	
	instructions and PowerPoint format and soft copies of lectu	re notes. There	
	will be interactive classroom students' engagement session	ons, Group and	
	Individual Assignments/Tasks, Live Quizzes to assess	the immediate	
	students' understanding of concepts etc.		
Detailed Course	Definitions and Introduction to Planning, Analysis,	Design and	
Content	Implementation. The Systems Analyst, Information Systems	s Development,	
	System Development Lifecycle. Project Selection and Mana	gement, Project	
	Methodology Options, Project success factor.Selecting the	he Appropriate	
	Development Methodology, Critical systems. Use Case Ar	nalysis, Process	
	Modeling, Data Modeling. Moving into Design, System Acquisition		
	Strategies. Architecture Design, Operational Requirements, Performance		
	Requirements, Security Requirements, Cultural and Political Requirements,		
	Hardware/Software Specification. User Interface Design, Principles and		
	Processes of User interface Design, HCI Issues, Navigation Design,		
	Input/Output Design. Program Design, Physical Data Flow Diagram,		
	Structure Chart, Program Specification. Data Storage Design.		
	Implementation Phase, Coding with C++, VB.Net, JAVA. P	ractical System	
	Analysis and Design I. Practical System Analysis and Des	ign II. Tutorial	
	and Revision for Course Examination		
Course Content Seq	uencing		
Weeks	Detailed Course Outline	Allocated Time	
Week1	Definitions and Introduction to:	3 Hours	
	• Planning,		
	Analysis		
	• Design and		
	• Implementation.		
	-		

Week2,3,4	2. The Systems Analyst.	9 Hours
	Information Systems Development	
	System Development Lifecycle.	
	• Project Selection and Management,	
	Project Success factor	
	Project Methodology Options,	
	• Selecting the Appropriate Development	
	Methodology.	
	Critical Sytems	
	Use Case Analysis	
	Process Modeling, Data Modeling.	
Week 5,6	3. Design	6 Hours
	System Acquisition Strategies.	
	Architecture Design	
	Operational Requirements, Performance	
	Requirements, Security Requirements, Cultural	
	and Political Requirements	
	Hardware/Software Specification.	
	4.Continuous Assessment I	
Week 7,8	5. User Interface Design	6 Hours
	• Principles and Processes of User interface Design	
	• HCI Issues, Navigation Design, Input/Output	
	Design.	
	• Program Design, Physical Data Flow Diagram,	
	Structure Chart	
	Program Specification.	
Week9,10	6. Data Storage Design.	6 Hours
	• Practical System Analysis and Design	
	7. Continuous Assessment II	
Week 11, 12	8. Implementation Phase, Coding with C++, VB.Net,	6 Hours
	JAVA. Practical System Analysis and Design	
After Week 12	9. Examinations	

- 1. Barry Williams. (2012). Data Modeling by Example. London. 1st Edition. ISBN-13: 978-1478114192
- 2. Ian Sommerville. (2004). Software Engineering. Addison-Wesley. 7th edition.
- 3. Hargitay S & Dixon T. (1991). Software Selection for Surveyors. 1st Edition.

19.6 300 Level Second Semester

CSC398 - SIWES (Industrials Training) (6 Units)

The students undego six (6) months industrial Training with Institutions or Organization relative to Computer Science discipline and as approved by the Departmental SIWES Coordinator.

19.7 400 Level First Semester

CSC401 - Software Development and engineering (3 Units)

	FEDER	AL UNIVERSITY LOKOJA COURSE OUTLINE	
Faculty	Sciences	COURSE OUTLINE	
Department	Computer Science	ce	
Course Title	*	opment and engineering	
Year of Study	IV	phient and engineering	
Course Code	$\frac{1}{CSC401}$		
Credit Hours	3		
Contact Hours	38		
Pre-requisite(s)	Nil		
Mode of Delivery	Classroom Lectu Laboratory Pract		
Mode of Assessmer			Weight%
Continuous Assessn	ent		40%
Final Examination			60%
Total			100%
Course Lecturers	Dr. Edgar. O. O	Dsaghae	
and Instructor(s)			
Course	In this course the	e students will learn how to organize and man	age a software
Description	development pro	oject successfully, and the students should con	mbine specific
	knowledge, skill	s, efforts, experience, capabilities and the rig	ht intuition, to
	fully acquire the	concepts.	
Course	This course woul	ld enable the understanding of the following:	
Objectives	1. Provide s	students with the required skills in software E	ngineering.
		udents the software process and project manag udents the specifications, requirements analys	-
	design p	rocess.	
	4. Teach st	rudents how to test and implement software pr	oducts.
	5. Teach st	udents project management techniques.	

Learning	At the end of the course, students will be able to:
Outcomes	1. Understand the concepts of Software Engineering.
outcomes	2. Know the artifacts to manage and control during software
	development.
	 Organize the software development team. Know what are the indicators and measures of the activities.
	4. Know what are the indicators and measures of the software
	product's quality.
	5. Employ a certain set of software development practices.
	6. Translate a software development organization to a new modeling
	and/or development paradigm.
	7. To create and maintain a good relationship with customers and
	end-users of their software products.
	8. Remedial actions to take when something goes wrong in the course
	of the software engineering project.
Teaching and	Lessons for this course would be conducted in two hours per week. Lesson
Learning	time will comprise of classroom teachings and practical sessions. Most of the
	lesson time, will be spent on Instructor-led sessions, and the practical session
	would be Laboratory sessions and take-home assignment practical. The
	programming languages for the course are Java and Python.
Detailed Course	Software Process and Project Management; Introduction to Software
Content	Engineering, Software Process, Perspective and Specialized Process Models,
	Software Project Management: Estimation – LOC and FP Based Estimation,
1	
	COCOMO Model, Project Scheduling, Scheduling, Earned Value Analysis -
	COCOMO Model, Project Scheduling, Scheduling, Earned Value Analysis -
	COCOMO Model, Project Scheduling, Scheduling, Earned Value Analysis - Risk Management. Requirements Analysis and Specification; Software
	COCOMO Model, Project Scheduling, Scheduling, Earned Value Analysis - Risk Management. Requirements Analysis and Specification; Software Requirements: Functional and Non-Functional, User requirements, System
	COCOMO Model, Project Scheduling, Scheduling, Earned Value Analysis - Risk Management. Requirements Analysis and Specification; Software Requirements: Functional and Non-Functional, User requirements, System requirements, Software Requirements Document and Requirement
	COCOMO Model, Project Scheduling, Scheduling, Earned Value Analysis - Risk Management. Requirements Analysis and Specification; Software Requirements: Functional and Non-Functional, User requirements, System requirements, Software Requirements Document and Requirement Engineering Process: Feasibility Studies, Requirements elicitation and
	COCOMO Model, Project Scheduling, Scheduling, Earned Value Analysis - Risk Management. Requirements Analysis and Specification; Software Requirements: Functional and Non-Functional, User requirements, System requirements, Software Requirements Document and Requirement Engineering Process: Feasibility Studies, Requirements elicitation and analysis, requirements validation, requirements management-Classical
	COCOMO Model, Project Scheduling, Scheduling, Earned Value Analysis - Risk Management. Requirements Analysis and Specification; Software Requirements: Functional and Non-Functional, User requirements, System requirements, Software Requirements Document and Requirement Engineering Process: Feasibility Studies, Requirements elicitation and analysis, requirements validation, requirements management-Classical analysis: Structured system Analysis, Petri Nets-Data Dictionary. Design
	COCOMO Model, Project Scheduling, Scheduling, Earned Value Analysis - Risk Management. Requirements Analysis and Specification; Software Requirements: Functional and Non-Functional, User requirements, System requirements, Software Requirements Document and Requirement Engineering Process: Feasibility Studies, Requirements elicitation and analysis, requirements validation, requirements management-Classical analysis: Structured system Analysis, Petri Nets-Data Dictionary. Design Concepts, Design Model, Design Heuristic, Architectural Design; Design
	COCOMO Model, Project Scheduling, Scheduling, Earned Value Analysis - Risk Management. Requirements Analysis and Specification; Software Requirements: Functional and Non-Functional, User requirements, System requirements, Software Requirements Document and Requirement Engineering Process: Feasibility Studies, Requirements elicitation and analysis, requirements validation, requirements management-Classical analysis: Structured system Analysis, Petri Nets-Data Dictionary. Design Concepts, Design Model, Design Heuristic, Architectural Design; Design process Architectural styles, Architectural Design, Architectural Mapping using Data Flow- User Interface Design: Interface analysis, Interface Design–
	COCOMO Model, Project Scheduling, Scheduling, Earned Value Analysis - Risk Management. Requirements Analysis and Specification; Software Requirements: Functional and Non-Functional, User requirements, System requirements, Software Requirements Document and Requirement Engineering Process: Feasibility Studies, Requirements elicitation and analysis, requirements validation, requirements management-Classical analysis: Structured system Analysis, Petri Nets-Data Dictionary. Design Concepts, Design Model, Design Heuristic, Architectural Design; Design process Architectural styles, Architectural Design, Architectural Mapping using Data Flow- User Interface Design: Interface analysis, Interface Design– Component level Design: Designing Class based components, traditional
	COCOMO Model, Project Scheduling, Scheduling, Earned Value Analysis - Risk Management. Requirements Analysis and Specification; Software Requirements: Functional and Non-Functional, User requirements, System requirements, Software Requirements Document and Requirement Engineering Process: Feasibility Studies, Requirements elicitation and analysis, requirements validation, requirements management-Classical analysis: Structured system Analysis, Petri Nets-Data Dictionary. Design Concepts, Design Model, Design Heuristic, Architectural Design; Design process Architectural styles, Architectural Design, Architectural Mapping using Data Flow- User Interface Design: Interface analysis, Interface Design– Component level Design: Designing Class based components, traditional Components. Testing and Implementation; Software Testing Fundamentals-
	COCOMO Model, Project Scheduling, Scheduling, Earned Value Analysis - Risk Management. Requirements Analysis and Specification; Software Requirements: Functional and Non-Functional, User requirements, System requirements, Software Requirements Document and Requirement Engineering Process: Feasibility Studies, Requirements elicitation and analysis, requirements validation, requirements management-Classical analysis: Structured system Analysis, Petri Nets-Data Dictionary. Design Concepts, Design Model, Design Heuristic, Architectural Design; Design process Architectural styles, Architectural Design, Architectural Mapping using Data Flow- User Interface Design: Interface analysis, Interface Design– Component level Design: Designing Class based components, traditional Components. Testing and Implementation; Software Testing Fundamentals- Internal and External Views of Testing-White Box, Testing-Basis Path
	COCOMO Model, Project Scheduling, Scheduling, Earned Value Analysis - Risk Management. Requirements Analysis and Specification; Software Requirements: Functional and Non-Functional, User requirements, System requirements, Software Requirements Document and Requirement Engineering Process: Feasibility Studies, Requirements elicitation and analysis, requirements validation, requirements management-Classical analysis: Structured system Analysis, Petri Nets-Data Dictionary. Design Concepts, Design Model, Design Heuristic, Architectural Design; Design process Architectural styles, Architectural Design, Architectural Mapping using Data Flow- User Interface Design: Interface analysis, Interface Design– Component level Design: Designing Class based components, traditional Components. Testing and Implementation; Software Testing Fundamentals- Internal and External Views of Testing-White Box, Testing-Basis Path Testing Control Structure, Testing-Black Box, Testing-Regression Testing,
	COCOMO Model, Project Scheduling, Scheduling, Earned Value Analysis - Risk Management. Requirements Analysis and Specification; Software Requirements: Functional and Non-Functional, User requirements, System requirements, Software Requirements Document and Requirement Engineering Process: Feasibility Studies, Requirements elicitation and analysis, requirements validation, requirements management-Classical analysis: Structured system Analysis, Petri Nets-Data Dictionary. Design Concepts, Design Model, Design Heuristic, Architectural Design; Design process Architectural styles, Architectural Design, Architectural Mapping using Data Flow- User Interface Design: Interface analysis, Interface Design– Component level Design: Designing Class based components, traditional Components. Testing and Implementation; Software Testing Fundamentals- Internal and External Views of Testing-White Box, Testing-Basis Path Testing Control Structure, Testing-Black Box, Testing-Regression Testing, Unit Testing, Integration Testing, Validation Testing, System Testing and
	COCOMO Model, Project Scheduling, Scheduling, Earned Value Analysis - Risk Management. Requirements Analysis and Specification; Software Requirements: Functional and Non-Functional, User requirements, System requirements, Software Requirements Document and Requirement Engineering Process: Feasibility Studies, Requirements elicitation and analysis, requirements validation, requirements management-Classical analysis: Structured system Analysis, Petri Nets-Data Dictionary. Design Concepts, Design Model, Design Heuristic, Architectural Design; Design process Architectural styles, Architectural Design, Architectural Mapping using Data Flow- User Interface Design: Interface analysis, Interface Design– Component level Design: Designing Class based components, traditional Components. Testing and Implementation; Software Testing Fundamentals- Internal and External Views of Testing-White Box, Testing-Basis Path Testing Control Structure, Testing-Black Box, Testing-Regression Testing,

	Make/Buy Decision, COCOMO II, Planning, Project Plan, Pl	anning Process,
	RFP Risk Management, Identification, Projection, RMMM,	Scheduling and
	Tracking, Relationship between people and effort, Task Se	t and Network,
	Scheduling, EVA, Process and Project Metrics.	
Course Content	Sequencing	
Weeks	Detailed Course Outline	Allocated Time
Week 1, 2	1. Software Process and Project Management	6 Hours
	Introduction to Software Engineering	
	• Software Process, Perspective and Specialized	
	Process Models	
	Software Project management: Estimation	
	Requirements Analysis Design	
	• Project Scheduling, Scheduling, Earned Value	
	Analysis	
Week 3,4	2. Requirements Analysis and Specification	7 Hours
	• Software Requirements: Functional and Non-	
	Functional, User Requirements, System	
	Requirements, Software Requirements Document	
	• Requirement Engineering Process: Feasibility	
	Studies, Requirements elicitation and analysis	
	• Requirements Validation, Requirements	
	Management	
	Classical Analysis	
	Structured Systems Analysis	
	Petri Net-Data Dictionary	
	Continuous Assessment I	

 Design Process Design Concepts-Design Model Design Heuristic Architectural Design Architectural Styles, Architectural Design Architectural Mapping using Data Flow User Interface Design 	
 Design Heuristic Architectural Design Architectural Styles, Architectural Des Architectural Mapping using Data Flow 	
 Architectural Design Architectural Styles, Architectural Des Architectural Mapping using Data Flow 	
Architectural Styles, Architectural Des Architectural Mapping using Data Flow	
Architectural Mapping using Data Flow	
	sign,
User Interface Design	
Interface Analysis, Interface Design	
Component Level Design	
Designing Class Based Components, Tradition	onal
Components	
Week 8, 9, 104. Testing and Implementation	9 hours
Software Testing Fundamentals	
Internal and External Views of Testing	
White Box Testing-Basis Path Testing	
Control Structure Testing	
Black Box Testing, Regression Testing, Unit Test	ting,
Integration Testing and Validation Testing	
System Testing and Debugging	
Software Implementation Techniques: Cod	ding
Practices Best Coding Practices	
Refactoring	
Week 11, 12 5. Project Management	7 Hours
Estimation, FP Based, LOC Based, Make/	
Decision, COCOMO II	
• Planning, Project Plan, Planning Process, RFP I	Risk
Management	
 Identification, Projection, Risk Mitiga 	tion
Monitoring and Management (RMMM)	
Scheduling and Tracking	
Relationship between People and Effort, Task	Set
and Network, Scheduling and Earned V	
Analysis (EVA)	
Continuous Assessment II	
After Week 12 Examinations	

- 8. Nico L. (2021). Software Engineering for Absolute Beginners, Springer Science + Business Media, New York, United States.
- 9. Ian S. (2011). Software Engineering, Addison-Wesley Publishing, Massachusetts, United States.
- 10. Roger S. P. & Bruce R. (2015). Software Engineering: Practitioner's Approach, McGraw-Hill Education, New York, United States.
- 11. Rajilch V. (2011). Software Engineering: The Current Practice, CRC Press, Taylor & Francis, Raton, United Kingdom.
- 12. Otero Carls E. (2012). Software Engineering Design: Theory and Practice, CRC Press, Taylor & Francis, Raton, United Kingdom.

CSC403 - Survey and Organization of Programming Languages (4 Units)

FEDERAL UNIVERSITY LOKOJA COURSE OUTLINE			
Faculty	Faculty Sciences		
-			
Department	Computer Science		
Course Title	Survey and Organization of Programming Languages		
Year of Study	IV		
Course Code	CSC403		
Credit Hours	4		
Contact Hours	39		
Pre-requisite(s)	CSC 301		
Mode of Delivery	Classroom Lectures Term Paper Presentations Laboratory Practical Sessions		
Mode of Assessmer	nt	Weight%	
Continuous Assessm	nent	40%	
Final Examination		60%	
Total		100%	
Course Lecturers	Course Lecturers Dr. Victoria Ifeoluwa Yemi-Peters		
and Instructor(s)	Laboratory Instructors		
Course	In this course Students will learn how programming langu	ages work to	
Description	 broaden their language horizons on: Different programming languages Different language features and tradeoffs Useful programming patterns Study how languages are described / specified Study how languages are implemented 		
Course	Students will be equipped with the knowledge of the followin	g:	
Objectives	That- 1. Programming languages vary in their • Syntax		

	Style/paradigmSemantics	
	 Semantics Semantics 	
	Implementation	
	2. They are designed for different purposes	
	• Goals changes as the computing landscape changes, e.g., as	
	programmer time becomes more valuable than machine time.	
	3. Ideas from one language appear in others and also to know the appropriate	
	programming language to solve a problem task efficiently and effectively.	
Learning	At the end of this course, students will be expected to be able to:	
Outcomes		
	Identify the distinctive characteristics of each of these three major language	
	paradigms:	
	• Procedural	
	 Procedural Object-oriented 	
	 Functional 	
	• Write medium-sized programs in C++, JAVA, JAVA SCRIPT and	
	PYTHON	
	• Articulate the rationales for and differences between static and	
	dynamic type systems	
	• Evaluation by Comparing and contrasting the programming languages	
	 Understand, apply, and distinguish parametric data types; techniques 	
	to include:	
	• Inheritance	
	• Parametric data types and type inference	
	• Dynamic types	
	 Algebraic data types Type classes 	
	 Discuss the relative advantages and disadvantages of interpreters and 	
	compilers	
	• Understand and apply the iteration techniques:	
	• Discuss the trade-offs involved in programming with and without	
	referential transparency.Learn and explain a previously unknown programming language.	
	 Contribute to a large project in a previously unknown programming 	
	language.	
Teaching and	The class will meet for Three or Four hours each week. Class time will be	
Learning	used for a combination of Lectures, Group work presentations, Tutorials and	
	Laboratory Practical Sessions. Key concepts would be taught during	
	instructor-led sessions, Interactive class discussions alongside with the group	
	presentations, while the Laboratory sessions will be based on problem-	
	solving and evaluations using the four programming languages mentioned	
	above.	
Detailed Course	Overview of programming languages: History of	
Content	programming languages. Introduction to Collaborative programming-	
	Pair programming paradigms, Egoless programming, Git	
	Programming. Brief survey of programming paradigms (Procedural	
	languages, Object-oriented languages, Functional languages,	

	Declarative – non-algorithmic languages, Scripting languages), the
	effects of scale on programming methodology. Language Des	cription:
	Syntactic Structure (Expression notations, abstract Syntax Tre	ee,
	Lexical Syntax, Grammars for Expressions, Variants of Gram	mars),
	Language Semantics (Informal semantics, Overview of forma	.1
	semantics, Denotation semantics, Axiomatic semantics, Opera	ational
	semantics); Language definition structure. Data types and stru	ictures,
	Review of basic data types, including lists and tress, control structure	
	and data flow, Run-time consideration, interpretative languages,	
	lexical analysis and parsing; Declarations and types: The concept of	
	types, Declaration models (binding, visibility, scope, and lifet	ime),
	Overview of type-checking; Memory Management: Activation	n
	records and Garbage collection; Data Abstraction and ADT	
	Specifications mechanisms: Procedures, function, and iterations as	
	abstraction mechanisms; Parameterization mechanisms (reference vs.	
	value). Type parameters and parameterized types, Modularization in	
	programming languages; Object oriented language paradigm;	
	Functional and logic language paradigms. Engineering of	
	Programming Languages.	
Course Content Se	equencing	
Weeks	Detailed Course Outline	Allocated Time
Week1,2	Overview of Programming Paradigm:	6 Hours
	Procedural, Object-oriented, Functional. Classification of Programming Paradigm	
	Introduction Object Oriented Programming (OOP),	
	Real-World Applications of C++ and Java, Java Script and Python programming.	
Week2,3,4	Python programming.Introduction to Functional Programming, Logical Programming and its applicationsData Type and Data Structures: Scope(Global/ Local Scope), Binding and Visibility Relevance of data type with Java, Java Script, C++ and Python: Relevance of data structure with Java, Java Script, C++,	9 Hours
Week2,3,4	Python programming. Introduction to Functional Programming, Logical Programming and its applications Data Type and Data Structures: Scope(Global/ Local Scope), Binding and Visibility Relevance of data type with Java, Java Script, C++ and Python:	9 Hours
Week2,3,4	Python programming.Introduction to Functional Programming, Logical Programming and its applicationsData Type and Data Structures: Scope(Global/ Local Scope), Binding and Visibility Relevance of data type with Java, Java Script, C++ and Python: Relevance of data structure with Java, Java Script, C++, Python	9 Hours

Week5,6	Language Description: Syntactic Structure (expression notations, abstract syntax tree, lexical syntax, grammar for expressions, variant of grammar)	6 Hours
Week7,8,9	Operational Semantics, Axiomatic Semantics AND Denotation. Interpreting Languages and RUN- TIME Considerations Continuous Assessment I : Group Project Presentations	9 hours
Week10,11,12	Presentations continues Parameterization Mechanism: Types of parameters and parameterized types, Reference VS Values, Activation record and storage management Tutorials Continuous Assessment II: Written Test	9 Hours
After Week 12	Examinations	
Recommended Re	ading Material	
	S. (2012). <i>Concepts of Programming Languages</i> (10 th ed.). Neucation, Inc.	w Jersey, USA:
	w.tutorialspoint.com/scope-and-lifetime-of-variables-in-java w.tutorialspoint.com/computer_programming/computer_program	nming_data_ty

CSC405 - Operating System I (3 Units)

FEDERAL UNIVERSITY LOKOJA COURSE OUTLINE		
Faculty	Sciences	
Department	Computer Science	
Course Title	Operating System I	
Year of Study	IV	
Course Code	CSC405	
Credit Hours	3	
Contact Hours	45	
Pre-requisite(s)	Nil	
Mode of	Classroom Lectures	
Delivery	Laboratory Practical Sessions	
Mode of Assessm	ient	Weight%
Continuous Asses	sment	40%
Final Examination	1	60%
Total		100%
Course	Dr (Mrs) Taiwo Kolajo	
Lecturers and	Mrs. Linda Okpanachi - Laboratory Instructor	
Instructor(s)		

Course Description	This course will be covered in two semesters. In the first semester, this course examines the important problems in operating system design and
Description	implementation. The operating system rovides an established, convenient, and efficient interface between user programs and the bare hardware of the computer on which they run. The operating system is responsible for sharing resources (e.g., disks, networks, and processors), providing common services
	needed by many different programs (e.g., file service, the ability to start or stop processes, and access to the printer), and protecting individual programs from
	interfering with one another. This course will introduce you to modern operating systems. We will focus on Windows-based operating systems, though we will also learn about alternative operating systems, including Linux. The
	course will begin with an overview of the structure of modern operating systems. Over the course of the subsequent units, we will discuss the history of
	modern computers, analyze in detail each of the major components of an operating system (from processes to threads), We will also explore process management.
Course	This course would enable the understanding of the following:
Objectives	1. Train the students to understand the basic components of operating
	systems.2. Enable students to understand interactions among the various
	components
	3. Explore the issues involved in the design and development of operating
	systems
Learning Outcomes	At the end of the course, students will be able to: 1. Describe the general organization of a computer system.
Outcomes	2. Describe the components in a modern multiprocessor computer
	system.
	3. Illustrate the transition from user mode to kernel mode.
	4. Discuss how operating systems are used in various computing
	environments.
	5. Provide examples of free and open-source operating systems.
	6. Identify services provided by an operating system.7. Illustrate how system calls are used to provide operating system
	services.
	 Compare and contrast monolithic, layered, microkernel, modular, and hybrid strategies for designing operating systems.
	9. Illustrate the process for booting an operating system.
	10. Apply tools for monitoring operating system performance.11. Design and implement kernel modules for interacting with a Windows kernel.
	12. Identify the separate components of a process and illustrate how they
	are represented and scheduled in an operating system. 13. Describe how processes are created and terminated in an operating
	system, including developing programs using the appropriate system calls that perform these operations.
	14. Describe and contrast interprocess communication using shared memory and message passing.
	15. Identify the basic components of a thread, and contrast threads and
	processes.
	16. Describe the major benefits and significant challenges of designing
	multithreaded processes.
	17. Illustrate different approaches to implicit threading, including thread
	pools, fork-join, and Grand Central Dispatch.

	18. Describe how the Windows and Linux operating sys	stems represent
	threads.	
	19. Describe various CPU scheduling algorithms.	
	20. Assess CPU scheduling algorithms based on schedul	e e
	21. Explain the issues related to multiprocessor	and multicore
	scheduling.	
	22. Describe various real-time scheduling algorithms.	
Teaching and	The class will meet for three hours each week. Class time will	
Learning	combination of Lectures, Recitations, Tutorials and Labor	
	Sessions. Key concepts would be taught during instructor-led the Laboratory sessions will be based on problem-solving	,
	modelling using Java or C Programming Languages	and software
Detailed	Definition of an operating system, the role of operating system	n in the overall
Course Content	computer system, Computer system organisation, com	nputer system
	architecture, operating system operations, kernel data structu	
	system services, user and operating system interface, system	•
	services, operating system design and implementation, operating and implementation. Process concept, process scheduling,	
	process, inter-process communication. Threads and	concurrency,
	1 / 1	uling criteria,
	scheduling algorithms.	
Course Content		
Weeks	Detailed Course Outline	Allocated
Week1, 2	8. Introduction to Operating Systems	Time 6 Hours
WEEKI, 2	 What operating systems do 	0 110015
	• User view, system view, defining operating system	
	Computer organisation	
	• Interrupts, storage structure, I/O structure	
	Computer system architecture	
	• Single-Processor Systems, Multiprocessor	
	Systems, Clustered Systems.	
	Operating-System Operations	
	• Multiprogramming and Multitasking, Dual-	
	Mode and Multimode Operation, Timer.	
	Kernel Data Structures	
	• Lists, Stacks, and Queues, Trees, Hash	
1	function, Bitmaps	

Week3,4	9. Operating System Structures	9 Hours
	Operating system services	
	User and Operating-System Interface	
	Command Interpreters, Graphical User	
	Interface, Touch-Screen Interface, Choice of	
	Interface	
	System Calls	
	Application Programming Interface, Types of System Calls	
	System Services	
	Linkers and Loaders	
	Operating-System Design and Implementation	
	Operating-System Structure	
	Monolithic Structure, Layered Approach,	
	Microkernels, Modules, Hybrid Systems	
Week5,6,7	10. Process Management	12 Hours
	Process Concept	
	• The Process, Process State, Process Control	
	Block, Threads	
	Process Scheduling	
	• Scheduling Queues, CPU Scheduling, Context	
	Switch	
	Operations on Processes	
	Process Creation, Process Termination	
	Interprocess Communication	
	IPC in Shared-Memory Systems	
	IPC in Message-Passing Systems	
	Naming, Synchronization, Buffering	
	11. Continuous Assessment I	
Week8	12. Threads and Concurrency	3 hours
	Overview	
	Motivation, Benefits	
	Multicore Programming	
	Programming Challenges, Types of Parallelism	
	Multithreading Models	
	• Many-to-One Model, One-to-One Model,	
	Many-to-Many Model	

Week9,10,11,12	13. CPU Scheduling	15 Hours
	Basic Concepts	
	• CPU–I/O Burst Cycle, CPU Scheduler,	
	Preemptive and Nonpreemptive Scheduling,	
	Dispatcher	
	Scheduling Criteria	
	Scheduling Algorithms	
	• First-Come, First-Served Scheduling, Shortest-	
	Job-First Scheduling, Round-Robin	
	Scheduling, Priority Scheduling, Multilevel	
	Queue Scheduling, Multilevel Feedback Queue	
	Scheduling	
	Multi-Processor Scheduling	
	• Approaches to Multiple-Processor Scheduling,	
	Multicore Processors, Load Balancing,	
	Heterogeneous Multiprocessing	
	Real-Time CPU Scheduling	
	• Minimizing Latency, Priority-Based	
	Scheduling, Rate-Monotonic Scheduling,	
	Earliest-Deadline-First Scheduling,	
	Proportional Share Scheduling	
	14. Continuous Assessment II	
After Week12	15. Examination	
Recommended R	leading Material	
	stallings. (2018). Operating Systems: Internals and Design Principl	es, 9th Edition.
	3-0-13-467095-9.	
	Dahlin & Thomas Anderson. (2014). Operating Systems: Principle	es and Practice,
2nd Editio	on. ISBN-13: 978-0985673529, ISBN-10: 0985673524.	

3. Andrew Tanenbaum & Herbert Bos. (2014). Modern Operating Systems, 4th Edition. ISBN 0-13-359162-X.

FEDERAL UNIVERSITY LOKOJA COURSE OUTLINE		
Faculty	Sciences	
Department	Computer Science	
Course Title	Introduction to Machine Learning	
Year of Study	IV	
Course Code	CSC407	
Credit Hours	3	
Contact Hours	36	
Pre-requisite(s)	CSC307	
Mode of	Classroom Lectures	
Delivery	Term Paper Presentations (Group Work)	
-	Laboratory Practical Sessions	
Mode of Assessm	ient	Weight %

CSC407 - Machine Learning/Data Science (3 Units)

Continuous Asses Final Examinatior		40% 60%
r mai examinatior	1	0070
Total		100%
Course Lecturers and Instructor(s)	Dr. Emeka Emmanuel Ogbuju -Laboratory Instructors	
Course Description	This course is designed to introduce the students to the contemporary topics in Machine Learning and Data Sciences. Emphasis would be placed on industry- applications over theoretical knowledge.	
Course Objectives	 At the end of the course, the student should be able to: understand some Machine Learning concepts (supervised). understand and be able to implement some of the Learning algorithms with python. find statistical patterns, dimensionality reductions, classifications and predictions. use any of the machine learning algorithms to solve problems 	e Machine clustering,
Learning Outcomes	At the end of the course, students will be able to:	1
Outcomes	 Design Machine Learning frameworks and methodo solving specific problems Build machine learning models and evaluate them for performance Undertake projects that would solve problems in different using general data science skills. 	or efficient
Teaching and Learning	The class will meet for three hours each week. Class time will be used for a combination of Lectures, Group project Presentation, Tutorials and Laboratory Practical Sessions. Key concepts would be taught during instructor-led sessions, while the Laboratory sessions will be based on problem-solving by major class groups using R/Rstudio Programming, Python Programming	
Detailed Course Content	Introduction to Machine Learning, Supervised and Unsupervised a	algorithms, Gaussian or analysis, arning and g machine clustering, e datasets, rt Vector luating and Learning
Course Content S Weeks	Sequencing Detailed Course Outline	Allocate
Week1	Introduction to Machine Learning, Supervised and Unsupervised	d Time 3 Hours
Week2,3,4	algorithms, Discriminative Algorithms, Generative learning algorithms. Gaussian discriminant analysis. Naive Bayes, Bias/variance tradeoff and error analysis, Learning Theory, Regularization and Model Selection, Online Learning and the Perceptron Algorithm. (optional reading),	9 Hours

Week,5,6	Advice on applying machine learning, Linear/Logistic regressions, Dimensionality reductions, clustering, classification and predictions, Inference and learning with huge datasets, Introduction to Neural networks, Decision trees, Support Vector Machine(SVM),	6 Hours
Week7,8	Introduction to data visualization and analytic, Evaluating and debugging learning algorithms, Introduction to Deep Learning	6 hours
Week9,10,11	 Practical advice on structuring an ML project. Introduction to Deep Learning. Project Implementations and Presentations Continuous Assessment II: Written Test 	12 Hours
After Week 1	2 Examinations	
W <u>y</u> 2. Ch	Goodfellow and Yoshua Bengio and Aaron Courville Deep Learnin vdawnictwo Naukowe PWN SA, 2018, 13: 978-0262035613, 10: 0262035 ristopher M. Bishop. Pattern Recognition and Machine Learning Springer, 2006 13: 978-0387310732 x Kuhn and Kjell Johnson. Applied Predictive Modelling 2016 Springer 13: 978-1461468486	5618 2019
	m M. Mitchell. Machine Learning 2018 McGraw - Hill, 1997 3-0070428072	13:
5. Sel	Dastian Raschka and Vahid Mirjalili. Python Machine Learning Packt Publishing, 2017 978-1783555130	2018
Со	relien GeronHands-On Machine Learning with Scikit -Learn and Tencepts, Tools, and Techniques to Build Intelligent Systems 2019NewD, 2017 good978-1491962299	ensorFlow: Delhi,

CSC409 - Net-Centric Computing (3 Units)

	FEDERAL ÚNIVERSITY, LOKOJA COURSE OUTLINE	
Faculty	Sciences	
Department	Computer Science	
Course Title	Net-Centric Computing	
Year of Study	4	
Course Code	CSC409	
Credits Hours	3	
Contact Hours	42	
Prerequisite		
Mode of delivery	Lectures, Discussions and Practical	
Pre-requisite		
Mode of Assessment		Weight
Assignment/Discussions		20%
Continuous Assessment		20%
Final Examination		60%

Total	100%
Course Lecturers and	Dr Frederick Duniya BASAKY
Instructors	-
Course Description	Net-Centric Computing
Course Objectives	
Learning Outcomes	
Teaching and Learning	The class will meet for three hours per week. The contact will be for
Detailed Course Content	lectures, discussions, presentation and defence of project work
Detailed Course Content	.Background and History of Networking and Internet Network Architecture
	-Client/Server
	-Peer-to-Peer]
	The OS1-7 layer Reference model in general
	Network Protocols
	Physical and Data link layer Concepts
	(framing, error control, flow control, protocols) Internetworking and routing
	(Routing algorithms, internetworking, congestion control)
	Transport Layer Services
	(connection establishment performance issues, flow and error
	control)
	Overview of Distributed Computing,
	-Overview of mobile and wireless computing -Fundamentals of Cryptography
	Authentication protocols
	Public-key algorithm –Types of attack e .g
	=denial of service
	=flooding
	=sniffing and
	=traffic redirection Basic Network tools & strategies
	-Intrusion detection
	-Fire wall
	-Detection of malware Kerberos
	.IPsec
	.Virtual Private Networks
	.Network Address Translation Web technologies
	.Web technologies .Basic Server-side programs (php ,mySqL)
	Basic Client Scripts (XHTML, XML, JavaScripts, CSS)
	.Nature of Client – server relationship
	.Web protocols with particular emphasis on HTTP
	. Support tools for website creation and web management
Weeks	. Building web application
Week 1	Course introduction and outline presented to students
Week 2, 3 and 4	-Introductions to basics and concepts of the course,
	- Background and History of Networking and Internet
	-Network Architecture
	-Client/Server
	-Peer-to-Peer]
Week 5 and 6	- Introducing the Reference models
WEEK J allu U	- The OSI 7 Layers Reference models
	- Network Protocols

	- Physical and Data link Layers and their concepts
Week 7 and 8	- Physical and Data link layer Concepts
	 (framing , error control ,flow control ,protocols) Internetworking and routing (Routing algorithms , internetworking ,congestion control)
	- Transport Layer Services
	(connection establishment performance issues, flow and error control)
Week 9, 10, and 11	 Overview of Distributed Computing, Overview of mobile and wireless computing Fundamentals of Cryptography Authentication protocols Public-key algorithm –Types of attack e .g =denial of service =flooding =sniffing and =traffic redirection
Week 12, 13 and 14	Basic Network tools & strategies -Intrusion detection -Fire wall -Detection of malware Kerberos .IPsec .Virtual Private Networks .Network Address Translation .Web technologies .Basic Server-side programs (php ,mySqL) .Basic Client Scripts (XHTML , XML , JavaScripts , CSS) .Nature of Client – server relationship .Web protocols with particular emphasis on HTTP .Support tools for website creation and web management .Building web application

	FEDERAL UNIVERSITY LOKOJA COURSE OUTLINE	
Faculty	Sciences	
Department	Computer Science	
Course Title	Introduction to Cryptography and Network Security	
Year of Study	IV	
Course Code	CSC411	
Credit Hours	2	
Contact Hours	24	
Pre-requisite(s)	Nil	
Mode of Delivery	Classroom Lectures	
	Tutorial Sessions	

Mode of Assessment		Weight%
Continuous Assessmen	nt	40%
Final Examination		60%
Total		100%
Course Lecturers	Prof. Francisca O. Oladipo	
and Instructor(s)	Mr Abdulwahab A. Jatto- Tutorial Sessions	
	Mrs Linda O. Okpanachi-Tutorial Sessions	
Course Description	In this course the students will be equipped with the	basic concepts of
	classical computer and network security paradigms. Also	they will learn both
	theory and the applications for providing effective secu	rity in DBMS and
	intrusion detection.	
Course Objectives	This course would enable the understanding of the follow	ving:
	1. Provide students with knowledge of cryptograph	nic systems as wel
	as various mathematical background of important	ce to cryptography
	2. Teach the students various techniques for iden	ntifying vulnerable
	target systems and attack patterns	
	3. Practically implement simple attacks to be tested	ed on messages, or
	implement simple cryptosystem, or impleme	nt prime number
	generator	
	4. Explore the issues relating to security and diffe	rent algorithms for
	key generation and cryptographic schemes	
Learning Outcomes	At the end of the course, students will be able to:	
	1. Demonstrate an understanding of the fundamentals of	Cryptography
	2. Understand the standard algorithms used to provi	de confidentiality
	integrity and authenticity; and define specifications f	for new and hybrid
	algorithms	
	3. Understand the various key distribution and managem	ent schemes.
	4. Identify vulnerable target systems and attack patterns	
	5. Understand how to deploy encryption techniques to se	ecure data in transi
	across data networks and build foundations to as	sess contemporary
	security policies and security mechanisms within	organizations and
	illustrate the balance of the managerial and technical	aspects of network
	security.	
	6. Discuss crypto-analysis methods used by intruder	s to break secure
	cryptosystems and current protocols for exchanging se	ecured data
	7. Implement Modular Arithmetic, perform system recov	very
	8. Develop symmetric and asymmetric cryptosystems	
	9. Perform an information systems audit using appropria	te tools

Teaching	and	The class will meet for two hours each week. Class time will be used for a
Learning		combination of Lectures, Recitations, while the Tutorial sessions would be
		organized 1 hour per week to focus on analyzing and solving applied
		numerical problems, using Python or Java for exploration of concepts under
		the supervision of teaching staff and participation of fellow students
Detailed Co	ourse	Basic definition of terms used in the text, Modular Arithmetic,
	Jurse	
Content		Introduction/overview (includes concepts and levels of security), Public key
		cryptosystem, Diffie-Hellman, RSA, Security planning, Security policies.
		Identifying attack patterns, Analysis of security threats and risks. Design
		issues in security systems. Techniques to preserve confidentiality and
		authenticity against active attacks, Signature/certificate schemes, Secret
		sharing schemes, Multilevel secure DB for both Relational and OO relational
		DBs, Operational tools necessary for analysis and resolution of problems
		w.r.t effective filters and firewalls, tracing sources of attack and systems
		recovery, Security controls: System control, Input control, Processing
		control, Output control, Physical control of information assets, Discussion
		will be focused on physical protection of information assets from
		unauthorized access, Implementation and monitoring of security systems.
		Classical Encryption Techniques: Symmetric Cipher Model, Cryptography,
		Cryptanalysis and Brute-Force Attack, Substitution Techniques, Caesar
		Cipher, Monoalphabetic Cipher, Playfair Cipher, Hill Cipher, Polyalphabetic
		Cipher, One Time Pad. Block Ciphers and the data encryption standard:
		Traditional block Cipher structure, stream Ciphers and block Ciphers,
		Motivation for the feistel Cipher structure, the feistel Cipher, The data
		encryption standard, DES encryption, DES decryption, ADES example,
		results, the avalanche effect, the strength of DES. Cryptographic Hash
		Functions: Description, construction and properties, keyed vs. unkeyed,
		attacks, Iterated hash functions.
		Wireless network security: Wireless security, Wireless network threats,
		Wireless network measures, mobile device security, security threats, mobile
		device security strategy, IEEE 802.11 Wireless LAN overview, the Wi-Fi
		alliance, IEEE 802 protocol architecture. Security, IEEE 802.11i services,
		IEEE 802.11i phases of operation, discovery phase, Authentication phase,
		key management phase, and protected data transfer phase. Electronic Mail
		Security: Pretty good privacy, notation, operational; description, S/MIME,
		RFC5322, Multipurpose internet mail extensions, S/MIME functionality,
		S/MIME messages, S/MIME certificate processing, enhanced security
		services, Domain keys identified mail, internet mail architecture, EMail
		threats. Data Integrity, Authentication, MAC: Definition of a secure MAC

	algorithm, Applications of MAC algorithms (data integri authentication), Generic attacks on MAC algorithms.	ty, data orig
Course Content	Sequencing	
Weeks	Detailed Course Outline	Allocated
		Time
Week1,2	1. Cryptographic terms	4 Hours
	• Basic definition of terms used in the text,	
	Modular Arithmetic	
	Introduction/overview of cryptography	
	• gcd, a b, euclidean algorithm, extended	
	euclidean algorithm	
	• Public key cryptosystem, Diffie-Hellman, RSA	
	etc.	
	• Security of the RSA key generation process	
Week3,4,5	2. Security Planning, Policies and Control	9 Hours
	Security planning, Security policies.	
	• Design issues in security systems. Techniques to	
	preserve confidentiality and authenticity against	
	active attacks.	
	Security controls	
	• Implementation and monitoring of security	
	systems.	
	Continuous Assessment I	
Week 6,7	3. Classical Encryption Techniques	6 Hours
	• Symmetric vs. Asymmetric/Public Key	
	Cryptography	
	Block Ciphers	
	Data Encryption Standard (DES)	
	Block Cipher Modes	
	Other Symmetric Ciphers	
	Advanced Encryption Standard (AES)	
	One Time Pad	
Week8,9	4. Cryptographic Hash Functions	7 hours
	 Description, construction and properties 	

	- 1	
	• keyed vs. unkeyed	
	• attacks	
	Iterated hash functions	
	 advanced attacks on hash functions 	
	5. Wireless Security and Cryptographic Protocols	
	• IEEE 802 protocol architecture.	
	• Phases of operation, discovery phase,	
	Authentication phase, key management phase, and	
	protected data transfer phase.	
	Electronic Mail Security	
Week10,11,12	6. Data Integrity, Authentication, MAC	7 Hours
	• Definition of a secure MAC algorithm.	
	• Applications of MAC algorithms (data integrity,	
	data origin authentication).	
	Generic attacks on MAC algorithms	
	Confidentiality	
	Access control	
	• Devastating attack by Fluhrer, Mantin and Shamir	
	• Key recovery by a passive adversary	
	8. Class Discussion: The crypto wars: should we have	
	end-to-end encryption?	
	9. Mini Project: Implementation of simple attacks to	
	be tested on messages, or implementation of simple	
	cryptosystem, or implementation of a prime number	
	generator using Java or Python.	
	10. Continuous Assessment II	
After week 12	11. Examinations	
Recommended Read	ing Material	
13. A.J. Menezes	, P. van Oorschot and S.A. Vanstone. (1997). The Handbo	ok of Applied
Cryptography	. CRC Press.	
14. Nigel Smart.	(2004) Cryptography: An Introduction (3rd Edition). McGrav	v-Hill College.
ISBN-13 : 97	78-0077099879	
	Jan Pelzl. (2010). Understanding Cryptography (1st Edition), S	pringer-Verlag
	berg. ISBN-978-3-642-44649	
	7. Lindell. (2 nd Edition) Introduction to Modern Cryptography	(2nd edition),
CRC Press, IS	BN-13: 978-1466570269	

	FEDERAL UNIVERSITY LOKOJA COURSE OUTLINE	
Faculty	Sciences	
Department	Computer Science	
Course Title	Introduction to Computer Science	
Year of Study	IV	
Course Code	CSC421	
Credit Hours	2	
Contact Hours	24	
Pre-requisite(s)	Nil	
Mode of Delivery	Classroom Lectures Case Studies Analysis	
Mode of Assessmen	t	Weight%
Continuous Assessm	ent	40%
Final Examination		60%
Total		100%
Course Lecturers	Prof. Francisca O. Oladipo	
and Instructor(s)		
Course	Project Management is a very important area of in	formation technology
Description	today as the primary challenge of managing IT pro	jects is to develop an
	acceptable information system on schedule and withi	n the allocated budget
Course Objectives	At the end of this course, students would:	
	1. Understand the growing need for better	project management
	especially for information technology project	ets.
	2. Explain what a project is, provide exar	nples of information
	technology projects, list various attributes of	projects, and describe
	the triple constraint of projects.	
	3. Describe project management and discuss	key elements of the
	project management framework, including	project stakeholders
	the project management knowledge areas	, common tools and
	techniques, and project success factors.	
	4. Understand the role of the project manage	
	project managers do, what skills they need	, and what the caree
	field is like for information technology proje	-
	5. Understand Project Management Risks and	Construct Risk Logs

Learning	At the end of the course, students will be able to:	
Outcomes	14. Develop acceptable Project Management tools	
	15. Prepare a Project Management Plan	
	16. Manage mini projects based on both Prince2	and PMBoK
	Processes	
	17. Undertake Certifications on Project Managemen	t
Teaching and	Lectures, Recitations, Tutorials: Key concepts would be	taught during
Learning	instructor-led sessions	
	Laboratory: Project Management based on PRINCE2 and P	MBoK
Detailed Course	Introduction: Definition, Phases and Processes, Methodolog	ies, Importance
Content	and advantages, Standards: PRINCE2, PIMBOK. Conten	nporary Issues:
	PM Software and tools, Certification Programs and Co	ourses, Human
	Resources and Staffing, IT Project Risk Management, I'	T Project Cost
	Management, Quality Assurance, Change Management.	
Course Content Seq	uencing	
Weeks	Detailed Course Outline	Allocated Time
Week1	16. Introduction and definition	2 Hours
	• Definition of Project, Project Management and the	
	underlying concept elements	
Week2,3	17. Phases and Processes	4 Hours
	18. Methodologies	
	19. Importance and advantages	
	20. Continuous Assessment I	
Week 4,5, 6	21. Project Management Standards and certifications	6 Hours
	22. PRINCE2, PIMBOK	
	23. Hands on and case studies using the two standards	
Week 6,7,8	24. Contemporary Issues in Project Management	6 hours
	25. PM Software and tools	
	26. Certification Programs and Courses	
	27. Human Resources and Staffing	
Week 9,10	28. IT Project Risk Management	4 hours
	29. IT Project Cost Management	
Week 11,12	29. IT Project Cost Management 30. Quality Assurance	4 hours
Week 11,12	· · ·	4 hours

- 17. The Project Management Institute (PMI) (2017): A Guide to the Project Management Body of Knowledge (6th edition).
- 18. Brett Harned (2017). Project Management for Humans: Helping People Get Things Done
- 19. Scott Berkun (2008). Making Things Happen: Mastering Project Management (revised edition)
- 20. Adam Josephs and Brad Rubenstein (2018). Risk Up Front: Managing Projects in a Complex World
- 21. Other resources
- Introduction to project Management by Coursera <u>https://www.edx.org/course/introduction-to-project-management</u>

SC 433 – Computer Graphics and Visualization (2 Units) FEDERAL UNIVERSITY LOKOJA COURSE OUTLINE				
Faculty	Sciences			
Department	Computer Science			
Course Title	Computer Graphics and Visualization			
Year of Study	IV			
Course Code	CSC433			
Credit Hours	2			
Contact Hours	24			
Pre-requisite(s)	Nil			
Mode of Delivery	Classroom Lectures Laboratory Practical Sessions			
		-		
Mode of Assessm	Mode of Assessment Weight			
Continuous Assessment		40%		
Final Examination	nal Examination 60%			
Total		100%		
Course	Mr. Ihinkalu Olalekan Ebenezer			
Lecturers and	Mr. Isiaka Dauda/Mr. Paulinus Umeh (Practical Class)			
Instructor(s)				
Course	The course covers general purpose graphics systems and their use. It gives an			
Description	in depth knowledge of computer graphics and graphical user interfaces. This course introduce students to the concepts of graphical representation on computers and teach students the design of good graphical user interfaces.			
Course	This course would enable the understanding of the following:			
Objectives	a) Understand various Computer Visualization big ideas such as Image			
	Representation, Scan Conversion, Color Modelling, n-	- Dimensional		

CSC 433 – Computer Graphics and Visualization (2 Units)

	Transformation, primitive shape representation and rendering.		
	b) Understand the underlying algorithms, mathematical concepts, supporting		
	computer graphics such as composite 3D homogeneous matrices for		
	translation, rotation, and scaling transformations, plane, surface normals,		
	cross and dot products, hidden surface detection / removal, Scene graphs,		
	display lists		
	c) Show an understanding of how to communicate effectively using efficient visuals		
	d) Discuss the application of computer graphics concepts in the development		
	of computer games, information visualization, and business applications; as		
	well as future trends in computer graphics and quickly learn future computer		
	graphics concepts and APIs.		
	e) Develop algorithms to identify and analyze misleading charts and		
	visualizations using		
	f) Specify the general software architecture of programs that use 3D computer		
	graphics.		
	g) Understand the hardware system architecture for computer graphics:		
	graphics pipeline, frame buffers, and graphic accelerators/co-processors.		
	h) Be able to use the 3D graphics API OpenGL.		
	i) Select among models for lighting/shading: Color, ambient light; distant and		
	light with sources; Phong reflection model; and shading (flat, smooth,		
	Gourand, Phong); and current models for surfaces (e.g., geometric;		
	polygonal; hierarchical; mesh; curves, splines, and NURBS; particle.		
	j) Design and implement model and viewing transformations, the graphics		
	pipeline and an interactive render loop with a 3D graphics API.		
	k) Design and implement models of surfaces, lights, sounds, and textures		
	(with texture transformations) using a 3D graphics API.		
	1) Demonstrate familiarity with visual design by developing an interactive		
	data visualization tool		
	m) Present their skills in visual design and communication in a group project.		
Learning	At the end of the course, students will be able to:		
Outcomes	1. Students should have an in depth knowledge of computer graphics		
	and graphical user interfacesStudents will be able to use detailed example to solve problems		
	 Students will be able to use detailed example to solve problems Students will able to understand the algorithms aspects of image 		
	synthesis		
	4. Also students should be able to write pseudocodes and explain what they are used for in computer graphics.		
	5. Students should be able to combine colors good colors for their front		
	end in designing a software. 6. Student should Understand the hardware system architecture for		
	computer graphics: graphics pipeline, frame buffers, and graphic		
	accelerators/co-processors.		

Teaching and	 And at the end of the course , they should be able skills in visual design and communication in a group The class will meet for two hours each week. Class time will 	project.
C		
Learning	combination of Lectures, Seminar Presentation, Tutorials a	•
	Practical Sessions. Key concepts would be taught during	
	sessions, while the Laboratory sessions will be based on problem	em-solving and
	software modelling using C++, JAVA, and Python.	
Detailed Course Content		Ionitor, Printer, nversion, Scan gles etc.), Scan erting Arcs and
	Converting a Circle, Scan Converting an Ellipse, Scan Converting Arcs and Sectors, Region Filling, Scan Converting a Character, Anti-Aliasing, Two- Dimensional, Transformations-Geometrics Transformations, Coordinate Transformation, Composite Transformation, Instance Transformation. Image Representation: The Digital Image, Raster Image Representation, Hardware Frame Buffers, Greyscale Frame Buffer, Pseudo-colour Frame Buffer, True-Colour Frame Buffer. Colour Representation: Additive vs. Subtractive Primaries, RGB and CMYK colour spaces, Greyscale Conversion, Hue, Saturation, Value (HSV) colour space. Geometric Transformation Rigid Body Transformations, Scaling, Shearing (Skewing) and Rotation. Active vs. Passive Interpretation. Animation Hierarchies: 3D Rigid Body Transformations, Rotation in 3D — Euler Angles, Rotation about an arbitrary axis in 3D. Image Formation – 3D on a 2D display, Perspective Projection and Orthographic Projection, Homography and its applications to Image, Digital Image Warping, Image-Based Rendering and Lighting, Graphics Pipeline and Rasterization, Ray Casting, tracing and Rendering, Graphics Hardware and Computer Games. Introduction to OpenGL Programming, Modelling and Matrices in OpenGL. Eigenmodel. Applications of Eigenvalue Decomposition in Computer Graphics. Mathematical Background: Points, Vectors and Notation. Basic Vector Algebra: Vector Addition, Vector Subtraction, Vector Scaling, Vector Magnitude, Vector Normalisation, Vector Multiplication, Dot Product and Cross Product. Reference Frames, Cartesian vs. Radial-Polar Form. Matrix Algebra: Addition, Scaling, Multiplication, Matrix Inverse and the Identity and Matrix Transposition. Basics of Computer Animation— Skinning/Enveloping, Particle Systems and ODEs, Hierarchical Modeling.	
Course Content S		Allogated
Weeks	Detailed Course Outline	Allocated Time
Week1	• Introduction to Computer Graphics and Visualisation	2 Hours

Week2,3,	Image Representation	4 Hours
	 Hardware Aspect, Plotter microfilm, Plotter Display, 	
	Graphic Tablets, Light Pens, and other Graphical	
	input aids. Facsimile and its related problems.	
	1. Continuous Assessment I	
Week4,5,6	• Scan Conversion (points, line, circle, ellipse)	6 Hours
	 Refresh display refresh huggers, changing images, Light pen interaction 	
	• Two and Three Dimensional Transformation,	
	• Two and Three Dimensional Transformation, perspective clipping algorithms. Hidden line	
	removal bolded, surface removal.	
	removal bolded, surface removal.	
W. 1 7 00		< 11
Week7,8,9	• Warmock's method, shading, data reduction for	6 Hours
	graphical inputs.	
	• Introduction to hand writing and character	
	recognition.	
	2. Seminar Presentation	
	On each Sub – Topics of Computer Graphics and	
	Visualization, the students from the beginning	
	of the semester will be shared in groups to	
	present seminar topics and graded appropriately	
	according to their group performance.	
Week 10,11,12	• Curves synthesis and fitting	6 Hours
	• Contouring. Ring structures versus doubly linked	
	lists	
	Hierarchical Structures	
	• Data structures: Organization for intersotive	
	graphics	
	3. Continuous Assessment II	
After Week 12	4. Examinations	
Recommended R	eading Material	
	& Visualization: Principles and Algorithms by T. Theoharis, G	. Papaioannou.
N. Platis &	& N.M Patrikalakis. http://graphics.cs.aueb.gr/cgvizbook/	-
	on to Computer Graphics by David J. Eck, Hobart & William S	mith Colleges.
	en.umn.edu/opentextbooks/textbooks/420 Outline of Computer Graphics 2nd Edition by Zhigang Xia	ang & Rov A
Plastock.	or comparer orapines 2nd Danion of Dingung And	

https://www.amazon.com/Schaums-Outline-Computer-Graphics-Zhigang/dp/0071357815 4. Fundamentals of Computer Graphics- CM20219- Lecture Notes by Dr. John Collomosse, University of Bath, UK, http://personal.ee.surrey.ac.uk/Personal/J.Collomosse/pubs/cm20219.pdf

CSC 441 – Artificial Intelligence II (2 Units)

	FEDERAL UNIVERSITY LOKOJA COURSE OUTLINE			
Faculty	Sciences			
Department	Computer Science			
Course Title	Artificial Intelligence II			
Year of Study	400			
Course Code	CSC441			
Credit Hours	2			
Contact Hours	24			
Pre-requisite(s)	CSC 208: Artificial Intelligence I			
Mode of Delivery	Classroom Lectures Laboratory Practical Sessions			
Mode of Assessment	t	Weight%		
Continuous Assessme	ent	40%		
Final Examination		60%		
Total		100%		
Course Lecturers	Dr. Edgar. O. Osaghae	I		
and Instructor(s)				
Course	In this course teaches students different ways of approac	hing Artificial		
Description	Intelligence (AI) problems.			
Course Objectives	This course would enable the understanding of the followin	g:		
	1. State the definition of Artificial Intelligence			
	2. List the different faculties involved with intelligent behavior	vior		
	3. Explain the different ways of approaching AI			
	4. Look at some example systems that use AI			
	5. Describe the history of AI			
	6. Explain what an agent is and how it interacts with the en	vironment		
	7. Identify the percepts available to the agent and the actions	s that the agent		
	can execute, if given a problem situation			
	8. Measure the performance used to evaluate an agent			
	9. State based agents			
	10. Identify the characteristics of the environment			
	11. Describe the state space representation			
	12. Describe Some algorithms			

search problem 14. Analyze the properties of Some algorithms	
14 Analyze the properties of Some algorithms	
17. Analyze the properties of some algorithms	
15. Analyze a given problem and identify the most suitable search st	trategy
for the problem	
16. Solve Some Simple problems	
17. Explain Uninformed Search	
18. List two types of Uninformed Search	
19. Describe Depth First and Breadth First Search	
20. Solve simple problems on Uninformed Search	
21. Explain informed Search	
22. Mention other names of informed Search	
23. Describe Best-first Search	
24. Describe Greedy Search	
25. Solve simple problems on informed Search	
26. Describe a Game tree	
27. Describe Some Two-Player Games Search Algorithms	
28. Explain Intelligent Backtracking	
29. Solve Some Simple problems on tree search	
30. Explain the meaning of Knowledge Representation (KR)	
31. Describe the history of History of knowledge representation	on and
reasoning	
32. List some Characteristics of KR	
33. List 4 main features of KR language	
34. Describe the History of IPL	
35. Discuss the similarities between Lisp and Prolog Programming	
36. list the areas where Lisp can be used	
37. Describe the history of natural language processing	
38. List major tasks in NLP	
39. Mention different types of evaluation of NPL	
40. Explain an Expert System	
41. Distinction between expert systems and traditional problem s	olving
programs	
42. Explain the term "Knowledge Base"	
43. Explain the word Robotics	
44. List 4 types of Robotics you know	
45. Describe the history of Robotics	

Learning	At the end of the course, students will be able to:	
Outcomes	1. Understand intermediate level of AI and then move	es on to more
	advanced concepts.	
	2. Understand the description of search in artificial Intel	ligence - State
	Space Search, Uninformed Search, informed Search Strat	egies and Tree
	Search are also treated.	
	3. Understanding of Knowledge Representation and	programming
	languages for AI.	
	4. Introduction to Artificial Intelligence and its applica	tions – Expert
	System and Robotics.	
Teaching and	The class will meet for two hours each week. Class time wi	ill be used for a
Learning	combination of Lectures, Recitations, Tutorials and Labor	ratory Practical
	Sessions. Key concepts would be taught during instructor	or-led sessions,
	while the Laboratory sessions will be based on proble	m-solving and
	software modelling using IPL programming, Lisp Program	ming Language
	and Prolog Programming Language.	
Detailed Course	Introduction to AI; What is Artificial Intelligent (AI)?, Introduction to	
Content	Intelligent Agent (IA). Search in Artificial Intelligence; Introduction to	
	State Space Search, Uninformed Search, Informed Search Strategies, Tree	
	Search. Artificial Intelligence Techniques in Programming and Natural	
	Languages, Knowledge Representation, Programming Languages for	
	Artificial Intelligence, Natural Language Processing. Artificial	
	Intelligence and its Applications; Expert System, Robotics.	
Course Content Seq	uonaina	
Weeks	Detailed Course Outline	Allocated
		Time
Week 1	1. INTRODUCTION TO AI	2 Hours
	i) What Is Artificial Intelligent (AI)?	
	ii) Typical AI problem	
	iii) Practical Impact of AI	
	iv) Approaches to AI	
	v) Limits of AI Today	
	vi) AI History	

Week 2, 3	INTRODUCTION TO INTELLIGENT AGENTS	4 Hours
	i) Introduction to Agent; Agent Performance, Examples	
	of	
	Agents, Agent Faculties, Intelligent Agents,	
	Rationality,	
	Bound Rationality.	
	ii) Agent Environment; Observability, Determinism,	
	Episodicity, Dynamism, Continuity, Presence of other	
	Agents.	
	iii) Agent Architectures or Reflex Agent; Table Based,	
	Agent, Percept based, Subsumption Architecture,	
	State-	
	based Reflex Agent.	
	Continuous Assessment I	
Week 4	INTRODUCTION TO STATE SPACE SEARCH	2 Hours
	i) State space search; Goal Directed Agent, State Space,	
	Search Notations.	
	ii) Problem Space; Search Problem.	
	iii) Examples of Search Problems; Illustration of a search	
	process, Example problem: Pegs and Disks problem,	
	Queens Problem, Problem Definition - Example,	
	8 puzzle.	
	iv) Types of AI Search Techniques.	
Week 5	4. UNINFORMED SEARCH OR BRUTE FORCE	2 hours
	SEARCH AND INFORMED SEARCH OR	
	HEURISTIC SEARCH	
	i) Uninformed Search	
	ii) Depth First and Breadth First Search; Depth First	
	Search, Breadth First Search.	
	iii) What is Heuristic?; Examples of Heuristic Function.	
	iv) Best-first Search; Greedy Search, A* Search, Proof of	
	Admissibility of A*, Proof of Completeness of A*,	
	Properties of Heuristics, Using Multiple Heuristics.	
	v) Beam search; Name and Uses, Extensions.	
	vi) Hill climbing; Mathematical description, Variants.	

Week 6	TREE SEARCH	2 Hours
	Game Tree	
	Two-Player Games Search Algorithms; Minimax	
	Search, Alpha-Beta Pruning, Quiecence, Transposition	
	Tables, Limited Discrepancy Search, Intelligent	
	Backtracking	
Week 7	KNOWLEDGE REPRESENTATION	2 Hours
	Overview of Knowledge Representation; Characteristics,	
	History of Knowledge Representation and Reasoning.	
	Knowledge Representation Languages.	
) Domain Modeling	
	Ontological Analysis	
	Classic; The Classic Language, Enhancements to	
	Classic.	
Week 8	7. PROGRAMMING LANGUAGES FOR	2 Hours
	ARTIFICIAL INTELLIGENCE (AI)	
	i) IA Programming Language; A taste of IA	
	Programming	
	Language, History of IA Programming Language.	
	ii) Lisp Programming Language; History, Connection to	
	Artificial Intelligence, Areas of Application, Syntax	
	and	
	Semantics.	
	iii) Prolog Programming Language; History of Prolog,	
	Prolog Syntax and Semantics.	
Week 9	8. NATURAL LANGUAGE PROCESSING	2 Hours
	i) History of Natural Language Processing (NLP)	
	ii) NLP using Machine Learning	
	iii) Major Tasks in NLP	
	iv) Statistical Natural Language Processing	
	v) Evaluating of Natural Language Processing;	
	Objectives,	
	Sort History of Evaluation in NLP, Different Types of	
	Evaluation.	

Week 10	9 EXPERT SYSTEM	2 Hours
	i) What is an Expert System?; Comparison to Problem-	
	Solving Systems.	
	ii) Knowledge Base; Types of Knowledge Base.	
	iii) Inference Engine; Architecture, The Recognize-Act	
	Cycle, Data-Driven Computation versus Procedural	
	Control, Inference Rules, Chaining.	
	iv) Certainty Factors	
	v) Real-Time Adaption; Ability to make Relevant	
	Inquiries.	
	vi) Knowledge Engineering	
	v) General Types of Problems Solved	
	vi) Different Types of Expert Systems	
	vii) Examples of Applications Expert Systems	
	viii) Advantages Expert Systems	
	ix) Disadvantages Expert Systems	
Week 11, 12	10 ROBOTICS	4 Hours
	i) What is a Robot; Types of Robot, History of Robots.	
	ii) Components of Robots; Power Source, Actuation.	
	iii) Sensing; Touch, Vision.	
	iv) Manipulation; Mechanical Grippers, Vacuum	
	Grippers,	
	General Purpose Effectors.	
	v) Locomotion; Rolling Robots, Walking Applied to	
	Robots, Other methods of Locomotion,	
	Environmental	
	Interaction and Navigation, Human-Robot	
	Interaction,	
	Control, Robotics Research, Employment.	
	Continuous Assessment II	
After Week 12	1. Examinations	
Recommended Reading Material		
1. Bowling, M. and Veloso, M. (2002). Multiagent Learning Using a Variable Learning		
Rate Artificia	al Intelligence, 136(2): 215-250.	
2. Russell, Stua	rt J.; Norvig, Peter (2010). Artificial Intelligence: A Modern	Approach (3rd
ed.), Upper S	addle River, New Jersey: Prentice Hall, ISBN 0-13-604259	-7, p. 437-439.
 NATIONAL OPEN UNIVERSITY OF NIGERIA, COURSE GUIDE ON ARTIFICIAL INTELLIGENCE, Published By: National Open University of Nigeria First Printed 2012 ISBN: 978-058-826-4 		

4. Charu C. Aggarwal (2021). Artificial Intelligence: A Textbook, Springer Nature Switzerland AG, Gewerbestrasse 11, 6330 Cham, Switzerland.

19.8 400 Level Second Semester

CSC400 – Research Project (6 units)

FEDERAL UNIVERSITY LOKOJA COURSE OUTLINE		
Faculty	Sciences	
Department	Computer Science	
Course Title	Computer Graphics and Visualization	
Year of Study	IV	
Course Code	CSC400	
Credit Hours		
Contact Hours		
Pre-requisite(s)	Nil	
Mode of Delivery	Classroom Lectures Laboratory Practical Sessions	
Mode of Assessm	ent	Weight%
Seminar 1 – Topic	Approval	20%
Seminar 2 – Propo	osal Defence	20%
Seminar 3 – Progr	ess Report	20%
Final Examination	L Contraction of the second	40%
Total	Total 100%	
Course	All Staff	
Lecturers and		
Instructor(s)		
Course Description	Description different skills into a programming project. Students are expected to develop a running computer application bigger in size. More emphasis will be put on creativity, robustness, data validation, security and completeness.	
Course Objectives/	This course would enable the understanding of the following:	t aubiest space
Objectives/	 To provide an avenue for students to integrate different into a single application 	n subject areas
Learning Outcomes	2. To sharpen the students problem solving skills	
	Outcomes 3. To improve student's ability to read on his/her own as an avenue for solving a certain real life problem	
Detailed Course Content	Detailed Course Content Students should embark on Project works leading to substantial contribution to the field of Computer Science under the supervision of a departmental teaching staff. Students are expected to understand the art of final year project report writing, use systems analysis and design tools to design their respective projects, use a high-level/other relevant programming languages and	
	suitable compilers/interpreters to implement solutions to solve	e existing real-

life societal problem, write a comprehensive project report to describe the
details of objectives accomplished, methodology adopted, results obtained
from projects and how to convert such results into products. Possible
recommendations for improvement of the projects will also be provided.
Seminars will be conducted at the end of the course. Students will also be
expected to complete and present their respective final year project log books
for assessment.

CSC 402 – Data Communication and Networking (3 Units)

FEDERAL UNIVERSITY LOKOJA COURSE OUTLINE		
Faculty	Sciences	
Department	Computer Science	
Course Title	Data Communication and Networking	
Year of Study	4	
Course Code	CSC402	
Credit Hours	3	
Contact Hours	42	
Pre-requisite		
Mode of Delivery	Class lectures, Discussion and Practical	
Mode of Assessme	ent	Weight
Assignments Test Final Examination Total		20% 20% 60% 100%
Course Lecturer and Instructor Course Description	Dr Frederick Duniya BASAKY The Course Data Communication and Networking gives the students the required knowledge about the three key words, Data, Communication and Networking, their concepts and applications and how they are necessary to a graduate of computer science. The most important thing is the application of the course practically in real- life.	
Course Objectives	 At the end of the study student should be able to; 1. Define Data, and difference the two types of data then give clear diagrams of the two types data 2. define communication. state and draw well labelled diagrams of the three communication modes, give life example of each of the three communication/connection modes 3. Introduction of Fourier Analysis 4. define a network and give life examples, define networking, give examples network protocols, Distributed networks. 5. draw the seven layers of Open System Interconnection (OSI), mention the functions and applications of each of the OSI layers and understand how the layers works in connection to data flow, communication technologies 6. how a network is configured and installed? How Routers and switches are configured and installed, Understand the concept of internetworking, 7. Understand the application of the fundamentals of Cryptography in Data, Communications and Networking 8. Draw the Four Layers of TCP/IP Layers, Draw a clear differentiate between 	

 the two reference models (OSI and TCP/IP) 9. understand clearly the technology of the GSM, To list and give the functions of the networking and equipment 10. Configure and install the basic networking equipment (Switches, Routers, Modem and Hubs)
11. Define and give examples of network topologies
 The students at the end of the lectures; were able to understand the basic concepts and applications of data communication and networking
- the lectures holds for three hours in a week with Practical holding in between.
 Define Data, difference the two types of data give clear diagrams of the two types data define communication state and draw well labelled diagrams of the three communication modes give life example of each of the three communication/connection modes understand the concept and application of Fourier Analysis define a network and give life examples define networking give examples network protocols draw the seven layers of Open System Interconnection to data flow, communication technologies how a network is configured and installed? How Routers and switches are configured and installed Understand the application of the fundamentals of Cryptography in Data, Communications and Networking Draw the Four Layers of TCP/IP Layers Draw the Gifferentiate between the two reference models (OSI and TCP/IP) Understand clearly the technology of the GSM To list and give the functions of the networking equipment (Switches, Routers, Modem and Hubs) Define and give examples of network top
tent Sequencing
Introduction of the course to the class and course contents.
Define Data, and difference the two types of data then give clear diagrams of the two types data
define communication. state and draw well labelled diagrams of the three communication modes, give life example of each of the three communication/connection modes Introduction of Fourier Analysis
define a network and give life examples, define networking, give examples network protocols, Distributed networks.
. draw the seven layers of Open System Interconnection (OSI), mention the functions and applications of each of the OSI layers and understand how the layers works in connection to data flow, communication technologies

	how a network is configured and installed? How Routers and switches are configured and installed, Understand the concept of internetworking,	
Week 10 and 11	Understand the application of the fundamentals of Cryptography in Data, Communications and Networking	
	Draw the Four Layers of TCP/IP Layers, Draw a clear differentiate between the two reference models (OSI and TCP/IP)	
Weeks 12 and 13	understand clearly the technology of the GSM, To list and give the functions of the networking and equipment Configure and install the basic networking equipment (Switches, Routers, Modem and Hubs)	
Week14	Define and give examples of network topologies, Collection and of assignments and administration of test	

CSC404 – Operating S	System II (3 Units)	
FEDERAL UNIVERSITY LOKOJA COURSE OUTLINE		
Faculty	Sciences	
Department	Computer Science	
Course Title	Operating System II	
Year of Study	IV	
Course Code	CSC404	
Credit Hours	3	
Contact Hours	45	
Pre-requisite(s)	Nil	
Mode of Delivery	Classroom Lectures	
	Laboratory Practical Sessions	
Mode of Assessment		Weight%
Continuous Assessme	nt	40%
Final Examination		60%
Total		100%
Course Lecturers	Dr Taiwo Kolajo	•
and Instructor(s)	Laboratory Instructors	
Course Description	The second part of the course will be covered in this semester,	a continuation
	of what we did in the first semester. This course will begin	
	synchronization and go through memory managements (main	
	virtual memory), security and protection to file system interfac	
	explore Windows and Linux Operating systems as	
	Programming exercises will be given to explore the above cor	cepts.
Course Objectives	This course would enable the understanding of the following:	
	1. Train the students to understand synchronization	techniques to
	achieve better performance of operating system	
	2. Enable students to understand main memory and v	irtual memory
	concepts	
	3. Explore the security and protection issues involved in	the design and
	development of operating systems	0

Learning Outcomes	At the end of the course, students will be able to: 1. Describe the critical-section problem and illustrate a race condition.
	 Describe the critical-section problem and mustrate a race condition. Demonstrate how mutex locks, semaphores, monitors, and condition
	variables can be used to solve the critical-section problem.
	3. Illustrate how deadlock can occur when mutex locks are used.
	 4. Define the four necessary conditions that characterize deadlock.
	 5. Identify a deadlock situation in a resource allocation graph.
	6. Evaluate the four different approaches for preventing deadlocks.
	 7. Apply the banker's algorithm for deadlock avoidance.
	 8. Apply the deadlock detection algorithm.
	9. Evaluate approaches for recovering from deadlock.
	10. Explain the difference between a logical and a physical address and
	the role of the memory management unit (MMU) in translating addresses.
	11. Apply first-, best-, and worst-fit strategies for allocating memory
	contiguously.
	12. Explain the distinction between internal and external fragmentation.
	13. Translate logical to physical addresses in a paging system that includes a translation look-aside buffer (TLB).
	14. Describe hierarchical paging, hashed paging, and inverted page tables.
	15. Define virtual memory and describe its benefits.
	16. Illustrate how pages are loaded into memory using demand paging.
	17. Apply the FIFO, optimal, and LRU page-replacement algorithms.
	18. Describe how Linux, Windows 10, and Solaris manage virtua memory.
	19. Explain the function of file systems.
	20. Describe the interfaces to file systems.
	21. Discuss file-system design tradeoffs, including access methods, file
	sharing, file locking, and directory structures.
	22. Explore file-system protection.
	23. Discuss security threats and attacks.
	24. Explain the fundamentals of encryption, authentication, and hashing
	25. Examine the uses of cryptography in computing.
	26. Describe various countermeasures to security attacks.
	27. Discuss the goals and principles of protection in a modern computer system.
	28. Explain how protection domains, combined with an access matrix
	are used to specify the resources a process may access.
	29. Examine capability- and language-based protection systems.
	30. Describe how protection mechanisms can mitigate system attacks.
	31. Explore the principles underlying Windows 10's design and the specific components of the system.
	32. Provide a detailed discussion of the Windows 10 file system.
	33. Illustrate the networking protocols supported in Windows 10.
	34. Describe the interface available in Windows 10 to system and application programmers.
	35. Describe the important algorithms implemented with Windows 10.
	36. Examine the Linux process and thread models and illustrate how
	Linux schedules threads and provides interprocess communication. 37. Look at memory management in Linux.

	38. Explore how Linux implements file systems and devices.	l manages I/O
Teaching and Learning	The class will meet for three hours each week. Class time will combination of Lectures, Recitations, Tutorials and Labor Sessions. Key concepts would be taught during instructor-led the Laboratory sessions will be based on problem-solving modelling using Python	ratory Practical sessions, while g and software
Detailed Course Content	Process synchronisation, synchronisation tools. Deadle characterisation, methods for handling deadlock, deadlo deadlock avoidance, deadlock detection, recovery from d memory, contiguous memory allocation, paging, swapping. V demand paging, page replacement, allocation of frames, concept, access method, directory structure. Security pro threats, system and network threats, cryptography as a sec authentication, implementing security defences. Goals principles of protection, domain of protection, access matrix, of access matrix, revocation of access rights, role-based mandatory access control (MAC), Windows and Linux opera case studies.	ck prevention, leadlock. Main Virtual memory, thrashing. File blem, program urity tool, user of protection, implementation access control,
Course Content Seq Weeks	uencing Detailed Course Outline	Allocated Time

Week1,2,3	33. Process Synchronisation	12 Hours
	Synchronisation Tools	
	The Critical-Section Problem	
	Peterson's Solution	
	Hardware Support for Synchronization	
	Memory Barriers, Hardware Instructions, Atomic Variables	
	Mutex Locks	
	Semaphores	
	• Semaphore Usage, Semaphore Implementation	
	Monitors	
	 Monitor Usage, Implementing a Monitor Using Semaphores, Resuming Processes within a Monitor 	
	Deadlocks	
	System Model	
	Deadlock in Multithreaded Applications	
	• Livelock	
	Deadlock Characterization	
	Necessary Conditions, Resource-Allocation Graph	
	Methods for Handling Deadlocks	
	Deadlock Prevention	
	 Mutual Exclusion, Hold and Wait, No Preemption, Circular Wait 	
	Deadlock Avoidance	
	• Safe State, Resource-Allocation-Graph Algorithm, Banker's Algorithm	
	Deadlock Detection	
	• Single Instance of Each Resource Type,	
	Several Instances of a Resource Type,	
	Detection-Algorithm Usage	
	Recovery from Deadlock	
	• Process and Thread Termination, Resource Preemption	

Week4,5,6,7	34. Memory Management	15 Hours
	Main Memory	
	• Basic Hardware, Address Binding, Logical	
	Versus Physical Address Space, Dynamic	
	Loading, Dynamic Linking and Shared	
	Libraries	
	Contiguous Memory Allocation	
	Memory Protection, Memory Allocation,	
	Fragmentation	
	• Paging	
	• Basic Method, Hardware Support, Protection,	
	Shared Pages	
	• Structure of the Page Table	
	• Hierarchical Paging, Hashed Page Tables,	
	Inverted Page Tables	
	Swapping	
	• Standard Swapping, Swapping with Paging,	
	Swapping on Mobile Systems	
	Virtual Memory	
	Demand Paging	
	• Basic Concepts, Free-Frame List,	
	Performance of Demand Paging	
	Page Replacement	
	• Basic Page Replacement, FIFO Page	
	Replacement, Optimal Page Replacement,	
	LRU Page Replacement, LRU-	
	Approximation Page Replacement,	
	Counting-Based Page Replacement, Page-	
	Buffering Algorithms, Applications and Page	
	Replacement	
	Allocation of Frames	
	• Minimum Number of Frames, Allocation	
	Algorithms, Global versus Local Allocation,	
	Non-Uniform Memory Access	
	• Thrashing	
	• Cause of Thrashing, Working-Set Model,	
	Page-Fault Frequency, Current Practice	
	Memory Compression	
	35. Continuous Assessment I	

Week7,8,9	36. File System	10 hours
	File Concept	
	• File Attributes, File Operations, File Types, File	
	Structure, Internal File Structure	
	Access Methods	
	• Sequential Access, Direct Access, Other Access	
	Methods	
	Directory Structure	
	Single-Level Directory, Two-Level Directory, Tree-	
	Structured Directories, Acyclic-Graph Directories, General Graph Directory	
	37. Security and Protection	
	Security	
	• The Security Problem	
	Program Threats	
	• Malware, Code Injection, Viruses and Worms	
	• System and Network Threats	
	• Attacking Network Traffic, Denial of Service, Port	
	Scanning	
	Cryptography as a Security Tool	
	• Encryption, Implementation of Cryptography	
	• User Authentication	
	Passwords, Password Vulnerabilities, Securing	
	Passwords, One-Time Passwords, Biometrics	
	Implementing Security Defenses	
	• Security Policy, Vulnerability Assessment,	
	Intrusion Prevention, Virus Protection, Auditing,	
	Accounting, and Logging, Firewalling to Protect	
	Systems and Networks, Other Solutions	
	Protection Goals of Protection	
	Principles of Protection	
	Protection Rings	
	Domain of Protection	
	Domain Structure	
	Access Matrix	
	• Implementation of the Access Matrix	
	Global Table, Access Lists for Objects, Capability	
	Lists for Domains, Lock–Key Mechanism,	
	Comparison	
	Revocation of Access Rights	
	Role-Based Access Control	
X7 1101110	Mandatory Access Control (MAC)	0.11
Week10,11,12	38. Case Studies	9 Hours
	Windows Operating System	
	Linux Operating System	
	39. Continuous Assessment II	
After Week 12	40. Examinations	

Recommended Reading Material

- 1. Wiiliam Stallings. (2018). Operating Systems: Internals and Design Principles, 9th Edition. ISBN 978-0-13-467095-9.
- 2. Michael Dahlin & Thomas Anderson. (2014). Operating Systems: Principles and Practice, 2nd Edition. ISBN-13: 978-0985673529, ISBN-10: 0985673524.
- Andrew Tanenbaum & Herbert Bos. (2014). Modern Operating Systems, 4th Edition. ISBN 0-13-359162-X.

FEDERAL UNIVERSITY LOKOJA **COURSE OUTLINE** Faculty Sciences Department **Computer Science Course Title** Special Topics(Internet Programming) IV Year of Study CSC406 **Course Code** 3 **Credit Hours Contact Hours** 36 Nil **Pre-requisite(s)** Mode of Delivery Classroom Lectures **Term Paper Presentations** Laboratory Practical Sessions Mode of Assessment Weight% Continuous Assessment 40% **Final Examination** 60% Total 100% Course Lecturers **Dr. Victoria I. Yemi-Peters** -Laboratory Instructors and Instructor(s) **Course Description** General introduction to Computer Science as a field of study, the convergence of IT and the Real world, the role of the industry in Computing training, General skills required to succeed in the computing field. Information Technology Project Management, Engineering Round-trip Software and Applications Mordernization, Introduction to Machine Learning and data Science –general skills required to be a Data Scientist, Machine Learning Tools, Big Data, Internet of Things (IoTs), Cloud/Fog Computing, Bring Your Own Device (BYOD), Responsible Research and User Experience, Virtual Reality, Version Control Systems (Git and atom), Latest Developers Platform: Kotlin, Jenkins, Julia. This Content covers the topic, Internet Programming. **Course Objectives** This course would enable the understanding of the following: 1. Students will extend their knowledge of HyperText Markup Language (HTML) to incorporate multimedia elements into web pages, create HTML

CSC 406 – Special Topics in Computer Science (3 Uints)

	 documents incorporate images, tables, lists, forms and other HTML Cascading Style Sheets to control web page layout and elements. 2. Students will extend their knowledge of Cascading Styl to apply responsive web design techniques for mobile devi 3. An introduction to the server-side/ client-side programm used to develop interactive web sites.(Using technologies s MySQL, JAVA SCRIPT) 4. Students will learn to create web sites that interact wit manage user sessions, and store and retrieve data from data 5. Students will learn how to write client-side s JavaScript/PHP/C++ programming language that add in dynamic behaviors to web pages. 6 State the technological trends which have led to IoT, desc of IoT on society, Name the core hardware components m used in IoT devices and describe the interaction between hardware in an IoT device 7. Have the knowledge of the application of Cloud Comp to the internet operations 	format HTML le Sheets (CSS) ices. hing techniques uch as PHP and th web servers, abases. scripts in the hteractivity and cribe the impact nost commonly n software and
Learning Outcomes	At the end of the course, students will be able to:	
8	18. Design a good and interactive web platform	
	19. The Groups are expected to present a working	ng project(web
	platform) temporarily hosted for Presentation a	s a part of their
	continuous assessment	_
	20. Have a knowledge of IoT and its real life applic	cations
	21. Know the practice of using a network of remove	e servers hosted
	on the internet(Cloud Computing)	
Teaching and	The class will meet for three hours each week. Class time	will be used for
Learning	a combination of Lectures, Group project Presentation,	Tutorials and
	Laboratory Practical Sessions. Key concepts would be	taught during
	instructor-led sessions, while the Laboratory sessions wi	ill be based on
	problem-solving by major class groups using CSS,HTM	AL, Java Script
	and PHP	
Detailed Course	Introduction and definition, Internet Programming, Scripting	ng Languages,
Content	introduction to the server-side/ client-side programming t	echniques used
	to develop interactive web sites. Strength and	Weakness of
	PHP,CSS,HTML,JAVA SCRIPT. Introduction to Clou	d Computing,
	Internet of Things.	
Course Content Sequ	iencing	
Weeks	Detailed Course Outline	Allocated Time
Week1	Introduction and definition, Internet Programming	3 Hours
		I

Week2,3,4	An introduction to the server-side /client-side	9 Hours
	programming techniques	
	HTML,CSS,PHP and JAVA SCRIPT	
	Continuous Assessment I: Grouping of the class for	
	Project and Presentation(Implementation of a	
	working web platform)	
Week,5,6	Introduction to IoT and its application	6 Hours
	Implementation of Group Projects (Discussions on	
	progress)	
Week7,8	Introduction to Cloud Computing: practice of using a	6 hours
	network of remove servers hosted on the internet. Real	
	life world applications	
Week9,10,11,12	Laboratory Practicals	12 Hours
	Project Implementations and Presentations	
	Continuous Assessment II: Written Test	
After Week 12	Examinations	
Recommended Readi	ing Material	1
	.(2011) Bulletproof Web Design: Improving Flexibility t-Case Scenarios with HTML5 and CSS3 (Voices That Mat ub; 299 pages	0
 Monteiro M.(2012) Design is a Job. The Holy Grail for Creative Professional everywhere. ISBN: 978-1-937557-04-1 		Professionals
3. Newcomer E(2002).Understanding Web Services- XML, WSDL, SOAP and UDDI		and UDDI

Newcomer E(2002).Understanding Web Services- XML, WSD
 Holzner S.(2006) Ajax For Dummies® Wiley Publishing, Inc.

CSC408 – Expert System Technology (2 Units)

FEDERAL UNIVERSITY LOKOJA COURSE OUTLINE	
Faculty	Sciences
Department	Computer Science
Course Title	Expert Systems
Year of Study	IV
Course Code	CSC408
Credit Hours	2
Contact Hours	24
Pre-requisite(s)	Nil
Mode of Delivery	Classroom Lectures Laboratory Practical Sessions
Status	Elective

Mode of Assessmen	ıt	Weight%
Continuous Assessn	nent	40%
Final Examination		60%
Total		100%
Course Lecturers	Prof. Francisca O. Oladipo	.1
and Instructor(s)	Mr. Paulinus Umeh -Laboratory Instructor	
Course	In this course the student will learn the methodology used	to transfer the
Description	knowledge of a human expert into an intelligent program th	at can be used
	to solve problems.	
Course	This course would enable the understanding of the following	<i>z</i> :
Objectives	1. Provide students with the understanding of the	technology of
	Expert Systems	
	2. Train the students in the process of developing an e	xpert systemin
	a specific domain	
	3. Develop in the students, the abilities to apply, bui	ld and modify
	rule-based systems to solve real problems,	
	4. Explore the issues involved in the design and de	evelopment of
	Expert Systems and the process of transfer of human	knowledge to
	a machine.	
Learning	At the end of the course, students will be able to:	
Outcomes	1. Define an Expert System and identify the compo	nents
	2. Apply the methodology to transfer human know	vledge into an
	expert system and develop a prototype Expe	ert System in
	different problem domains	
	3. Apply the different domains of learning to imp	lement a rule-
	based system, while applying knowledge repre-	esentation and
	design a knowledge base	
	4. Evaluate Expert System tools and implement a rul	e-based expert
	system	
	5. Carry out Genetic Algorithm Project based on De	cision Support
	System	
	6. Use various knowledge representation methods	and different
	expert system structures from the industrial engin	eering point of
	view	
Teaching and	The class will meet for two hours each week. Class time wil	
Learning	combination of Lectures, Recitations, Tutorials and Labora	-
	Sessions. Key concepts would be taught during instructor	
	while the Laboratory sessions will be based on problem	n-solving and
	software modelling using Python	

D 4 9 1	C		
Detailed	Course	Introduction and definition, Knowledge-Based Systems	· · · ·
Content		Systems (ES). Data/Information/Knowledge. Knowledge	•
		and mappings, approaches and issues (e.g. predicate logi	
		week and strong slot and filler structures), Semantic Nets,	
		Scripts, Logic, RDF. Knowledge acquisition, the frame prol	blem, symbolic
		reasoning under uncertainty (nonmonotonic reasoning,	augmenting a
		problem Solution). Reasoning and Inference: Predicate Log	gic, Description
		Logics, Inference Methods, Resolution. Reasoning and Infer	ence: Inference
		Methods, Resolution. ECLiPSe-specific Language featu	ires, Structure,
		Iteration, Loops, I/O), statistical reasoning (e.g. probab	ility and Bays
		Theorem, Bayesian networks, Dumpster-Shafer theorem	ory), building
		knowledge-based systems. Reasoning with Uncertainty	y. Probability,
		Bayesian Decision Making, Dempster-Shafer Theory, R	Reasoning with
		Uncertainty, Dempster-Shafer Theory, Approximate Rea	soning, Fuzzy
		Logic. Semantic Web Technologies, Semantic Web Tech	nologies, KBS
		Case Studies	
Course C	Content Se	quencing	
Weeks		Detailed Course Outline	Allocated Time
Week1		41. Introduction and definition	3 Hours
		• Definition of the underlying concept elements of	
		Expert Systems	
		Expert SystemsKnowledge-Based Systems (KBS),	
		× •	
		 Knowledge-Based Systems (KBS), 	
		Knowledge-Based Systems (KBS),Expert Systems (ES).	
Week2,3		 Knowledge-Based Systems (KBS), Expert Systems (ES). Expert Systems technology 	4 Hours
Week2,3		 Knowledge-Based Systems (KBS), Expert Systems (ES). Expert Systems technology Data/Information/Knowledge 	4 Hours
Week2,3		 Knowledge-Based Systems (KBS), Expert Systems (ES). Expert Systems technology Data/Information/Knowledge 42. Knowledge representations and mappings, 	4 Hours
Week2,3		 Knowledge-Based Systems (KBS), Expert Systems (ES). Expert Systems technology Data/Information/Knowledge 42. Knowledge representations and mappings, 43. Approaches and issues in Knowledge representation (e.g. predicate logic, fuzzy logic, 	4 Hours
Week2,3		 Knowledge-Based Systems (KBS), Expert Systems (ES). Expert Systems technology Data/Information/Knowledge 42. Knowledge representations and mappings, 43. Approaches and issues in Knowledge 	4 Hours
Week2,3		 Knowledge-Based Systems (KBS), Expert Systems (ES). Expert Systems technology Data/Information/Knowledge 42. Knowledge representations and mappings, 43. Approaches and issues in Knowledge representation (e.g. predicate logic, fuzzy logic, week and strong slot and filler structures), 	4 Hours
Week2,3		 Knowledge-Based Systems (KBS), Expert Systems (ES). Expert Systems technology Data/Information/Knowledge 42. Knowledge representations and mappings, 43. Approaches and issues in Knowledge representation (e.g. predicate logic, fuzzy logic, week and strong slot and filler structures), Semantic Nets, Rules, Frames, Scripts, Logic, 	4 Hours
Week2,3		 Knowledge-Based Systems (KBS), Expert Systems (ES). Expert Systems technology Data/Information/Knowledge 42. Knowledge representations and mappings, 43. Approaches and issues in Knowledge representation (e.g. predicate logic, fuzzy logic, week and strong slot and filler structures), Semantic Nets, Rules, Frames, Scripts, Logic, RDF. Knowledge acquisition, the frame problem, symbolic reasoning under uncertainty 	4 Hours
Week2,3		 Knowledge-Based Systems (KBS), Expert Systems (ES). Expert Systems technology Data/Information/Knowledge 42. Knowledge representations and mappings, 43. Approaches and issues in Knowledge representation (e.g. predicate logic, fuzzy logic, week and strong slot and filler structures), Semantic Nets, Rules, Frames, Scripts, Logic, RDF. Knowledge acquisition, the frame problem, symbolic reasoning under uncertainty (nonmonotonic reasoning, augmenting a problem) 	4 Hours
Week2,3		 Knowledge-Based Systems (KBS), Expert Systems (ES). Expert Systems technology Data/Information/Knowledge 42. Knowledge representations and mappings, 43. Approaches and issues in Knowledge representation (e.g. predicate logic, fuzzy logic, week and strong slot and filler structures), Semantic Nets, Rules, Frames, Scripts, Logic, RDF. Knowledge acquisition, the frame problem, symbolic reasoning under uncertainty 	4 Hours

Week4,5,6	45. Knowledge representations and mappings,	6 Hours
	approaches, and issues	
	46. predicate logic	
	47. fuzzy logic	
	48. week and strong slot and filler structures	
	49. Semantic Nets, Rules, Frames, Scripts, Logic,	
	RDF.	
	50. Knowledge acquisition	
	51. the frame problem	
	52. symbolic reasoning under uncertainty	
	(nonmonotonic reasoning, augmenting a problem	
	Solution)	
Week 7,8,9	53. Reasoning and Inference	6 hours of
	54. Predicate Logic, Description Logics, Inference	classes
	Methods, Resolution.	and lab
	55. Inference Methods, Resolution.	
	56. Laboratory Session	
	57. ECLiPSe-specific Language features, Structure,	
	Iteration, Loops, I/O)	
	58. statistical reasoning (e.g. probability and Bays	
	Theorem, Bayesian networks, Dumpster-Shafer	
	theory), building knowledge-based systems.	
	Reasoning with Uncertainty.	
Week 10,11	59. Probability, Bayesian Decision Making,	4 Hours
	Dempster-Shafer Theory, Reasoning with	
	Uncertainty, Dempster-Shafer Theory,	
	Approximate Reasoning, Fuzzy Logic. Semantic	
	Web Technologies, Semantic Web Technologies,	
Week 12	60. Continuous Assessment II: Team project, KBS	4 Hours
	Case Studies	
After Week 12	61. Examinations	
Recommended Rea	ding Material	
22. Peter Nikolo	opoulos. (1997). Expert Systems: Introduction to First and Seco	ond Generation
and Hybrid	and Hybrid Knowledge Based Systems 1st Edition. ISBN-13: 978-0824799274	
23. Peter J.F. Lucas & Linda C. van der Gaag. (1991). Principles of Expert Systems, Centre		ystems, Centre
for Mathematics and Computer Science, Amsterdam, Addison-Wesley.		
24. Bryan S. To Oxford, UK	dd, an introduction to Expert Systems, Technical Monograph	n, University of

25. Cornelius Leondes. (ed 2001). Expert Systems. The Technology of Knowledge Management and Decision Making for the 21st Century. Academic Press, 1st Edition

CSC412 – Compiler Construction II (C++ and Java) (3 Units)

FEDERAL UNIVERSITY LOKOJA COURSE OUTLINE		
Faculty	Sciences	
Department	Computer Science	
Course Title	Compiler Construction II	
Year of Study	IV	
Course Code	CSC412	
Credit Hours	3	
Contact Hours	36	
Pre-requisite(s)	Nil	
Mode of	Classroom Lectures	
Delivery		
Mode of Assessm	Mode of Assessment Weight%	
Continuous Assessment 40%		40%
Final Examination	nal Examination 60%	
Total	100%	
Course		
Lecturers		
Course	This course introduces students to the concept of automa	ta, grammars, LR
Description	table and complexity. It sets a background for more advanced	d computer studies
	like principles of programming languages.	
Course	At the end of this course, the student should	
Objectives	 Know types of parsers/parsing Know how to use compiler construction tools, such as generators of scanners and parsers Be familiar with assembly code and virtual machines, such as the JVM, and bytecode 	
	4. Be able to define LL, LR, and LALR grammars5. Be familiar with compiler analysis and optimization techniques	

Learning	At the end of the course, students will be able to:
C	
Outcomes	1. Understand all the basic and advanced concepts of Compiler
	Construction 2.
	2. Students should also be able to develop a simple compiler using
	either C++ or Java or both programming languages
	3. Students should be able to apply knowledge gained from compiler
	construction courses to solve real-life problem.
Teaching and	1. Lectures: contents of the course will be presented and taught to
Learning	students in the classroom. Classroom teachings will be supported
	with practical examples.
	2. Projects : Group and individual projects will be given to students
	to solve practical problems in compiler construction. Students will
	be expected to come to the classroom individually and defend their
	respective individual projects.
	3. Assignments: Students will be asked to solve class assignments
	with respect to topics covered in the class to examine, test the
	understanding of and reveal the state of assimilation of the course
	contents by students.
	4. Term Papers : Students will be asked to write comprehensive term
	papers on selected sub-topics within the compiler construction
	course contents. The term papers will help students develop their
	understanding and in-depth analysis of components of the course
	contents. In some situations, students will be given a typical
	compiler construction research paper and will be asked to study,
	analyze and summarize in their own understanding, gaps and
	findings from the contents of the paper. Such term papers however
	will be subjected to thorough plagiarism checks.
Detailed	Extensive revisions of Compiler Construction I as a foundation and
Course Content	Extensive revisions of Complici Construction 1 as a foundation and
Course Content	prerequisite for the course, Grammars and Languages - context free grammars
	-parts 1,2,3, Top-down and bottom-up language - Top-down parsing, bottom-
	up parsing, Run-time storage organization, The use of display in run-time
	storage allocation, LR grammars and analyzers, Construction of LR table-
	table-driven stack parser, Organization of Symbol table, Allocation of storage
	to run-time variables - Compiling to a register-oriented architecture, Code
	Generation, Optimization with systems- Optimization, Translator with
	129

	systems- Recursive-descent translation, recursive-desc	cent parsing,
	Introduction to Java CC, Introduction to Yacc, LL(1) Gramm	ars, Practical's
	on designing and developing a Simple Compiler S1- using	g Java or C++
	programming language.	-
Course Content S		
Weeks	Detailed Course Outline	Allocated Time
Week1	7. Recap of Compiler Construction I	3 Hours
	• Introduction to translators (Compilers,	
	Interpreters and Assemblers)	
	• Explain the phases of a compiler	
	• Describe the internal structure of a compiler	
	Describe grammars and languages	
	Explain regular expressions	
Week2,3	8. Parsing and Memory Organization	6 Hours
	• Top-down and bottom-up language - Top-down	
	parsing, bottom-up parsing,	
	Run-time storage organization	
	• The use of display in run-time storage allocation	
	• Allocation of storage to run-time variables -	
	Compiling to a register-oriented architecture	
	Continuous Assessment I	
Week4,5,6	9. LL, LR, and LALR grammars and analyzers,	9 Hours
	Construction of LL, LR, and LALR table- table-	
	driven stack parser, Organization of Symbol table,	
Week7,8	10. Code Generation, Optimization with systems-	6 hours
	Optimization, Translator with systems- Recursive-	
	descent translation, recursive-descent parsing	
Week9,10,11,12	11. Introduction to Java CC, Introduction to YACC,	12 Hours
	Practical's on designing and developing a Simple	
	Compiler S1- using Java or C++ programming	
	language	
	Revision and Continuous Assessment II	
After Week 12	12. Examinations	
Recommended R	Reading Material	
1. Aho, Alfr	red & Sethi, Ravi & Ullman, Jeffrey. Compilers: Principles, To	echniques, and
Tools ISB	3N 0201100886 The Classic Dragon book.	

- 2. Appel, *A., Modern Compiler Implementation in Java,* 2nd ed., Cambridge University Press, 2002.
- Appel, Andrew Modern Compiler Implementation in C/Java/ML (respectively ISBN 0-521-58390-X,ISBN 0-521-58388-8, ISBN 0-521-58274-1) is a set of cleanly written texts on compiler design, studied from various different methodological perspectives.
- 4. Brown, P.J. *Writing Interactive Compilers and Interpreters* ISBN 047127609X Useful practical advice, not much theory.
- Fischer, Charles & LeBlanc, Richard. Crafting A Compiler ISBN 0805332014 Uses an ADA like pseudo-code.
- 6. Fischer, LeBlanc, Cytron, Crafting a Compiler Implementation, Addison-Wesley
- 7. Holub, Allen Compiler Design in C ISBN 0131550454 Extensive examples in "C".
- 8. Hunter, R. *The Design and Construction of Compilers* ISBN 0471280542 several chapters on theory of syntax analysis, plus discussion of parsing difficulties caused by features of various source languages.
- 9. Keith, D. Cooper & Linda Torczon, "Engineering a Compiler", Morgan Kaufmann Publishers, 2004
- Pemberton, S. & Daniels, M.C. *Pascal Implementation. The P4 Compiler* ISBN 0853123586 (Discussion) and ISBN 085312437X (Compiler listing) Complete listing and readable commentary for a Pascal compiler written in Pascal.
- Randy Allen and Ken Kennedy, "Optimising Compilers for Modern Architectures", Morgan Kaufmann Publishers, 2001.
- 12. Weinberg, G.M. *The Psychology of Computer Programming: Silver Anniversary Edition* ISBN 0932633420 Interesting insights and anecdotes.
- Wirth, Niklaus Compiler Construction ISBN 0201403536 From the inventor of Pascal, Modula-2 and Oberon-2, examples in Oberon.

FEDERAL UNIVERSITY LOKOJA COURSE OUTLINE		
Faculty	Sciences	
Department	Computer Science	
Course Title	Computer Systems Performance Evaluations	
Year of Study	IV	
Course Code	CSC422	
Credit Hours	2	
Contact Hours	24	
Pre-requisite(s)	Nil	
Mode of	Classroom Lectures	
Delivery	Laboratory Practical Sessions	

CSC 422 – Computer System Performance Evaluation (2 Units)

Mode of Assessme	ent Weight%	
Continuous Assess	asment 40%	
Final Examination	n 60%	
Total	100%	
Course	Dr. Edgar. O. Osaghae	
Lecturers and		
Instructor(s)		
Course	In this course the students will learn how to measure the performance of a	
Description	Computer System	
Course	This course would enable the understanding of the following:	
Objectives	1. Teach the fundamental concepts behind the tools and techniques used	
	in computer-systems performance analysis.	
	2. Know sound scientific methodologies to use when conducting	
	performance evaluation experiments.	
	3. Comparing the performance of different computer systems and use the	
	results for decision making.	
	4. To understand how to interpret performance evaluation results in a	
	meaningful way	
Learning	At the end of the course, students will be able to:	
Outcomes	1. Understand the concepts of performance evaluation techniques and	
	their methodologies.	
	2. Know how to where to measure and how to measure differen	
	components of in a Computer System.	
	3. Use sound scientific methodologies in the right perspectives in orde	
	to avoid the risk of producing wrong analysis results.	
	4. Know the use of various simulation packages/tools.	
Teaching and	The class will meet for two hours each week. Class time will be used for a	
Learning	combination of Lectures, Recitations, Tutorials and Laboratory Practica	
	Sessions. Key concepts would be taught during instructor-led sessions, while	
	the Laboratory sessions will be based on problem-solving and software	
	modelling using C++ programming.	
Detailed Course Content	Introduction; Measuring Performance, Common Goals of Performance Analysis, Solution Techniques. Metrics of Performance; What is a Performance Metric? Characteristics of a Good Performance Metric, Processor and System performance Metrics, Other types of Performance Metrics Speedup and Relative Change, Means versus end Metrics. Average Performance and Variability; Why Mean Values? Indices of Centra Tendency, Other types of Means, Quantifying Variability. Errors in Experimental Measurements; Accuracy, Precision and Resolution, Sources of	

	Errors, A Model of Errors, Quantifying Errors. Comp Comparing two Alternatives, Comparing more than Measurement Tools and Techniques; Events and Meas Interval Timers, Program Profiling, Event Tracing, Ir Measurements, Perturbations due to measuring. Benchma of Benchmark Programs, Benchmark Strategies, Ex Programs. Linear-Regression Models; Least-Squar Confidence Intervals for Regression Parameters, Correlat Regression, Verifying Linearity, Nonlinear Models Experiments; Types of Experiments, Terminology, Two-J Generalized m-factor Experiments, n2 ^m Experiment Random-Number Generation; Simulation-Efficiency Cons Simulations, Random-Number Generation, Verification Simulations.	two Alternatives. surement Strategies, ndirect and ad hoc urk Programs; Types cample Benchmark res Minimization, ion, Multiple Linear . The Design of Factor Experiments, s. Simulation and siderations, Types of
Course Conter		
Weeks	Detailed Course Outline	Allocated Time
Week 1	1. Introduction	2 Hours
	Measuring performance	
	Common goals of performance analysis	
	Solution techniques	
Week 2, 3	2. Metrics of Performance	4 Hours
	• What is a Performance Metrics?	
	• Characteristics of a good performance metric	
	Processor and system performance metrics	
	• Other types of performance metrics	
	• Speedup and relative change	
	Means versus ends metrics	
	Continuous Assessment I	
Week 4	3. Average Performance and Variability	2 Hours
	• Why mean values?	
	Indices of central tendency	
	• Other types of means	
	Quantifying variability	
Week 5	4. Errors in Experimental Measurements	2 hours
	Accuracy, precision, and resolution	
	Sources of errors	
	• A model of errors	
W 1 4	Quantifying errors	
Week 6	5. Comparing Alternatives	2 Hours
	Comparing two alternatives	
	• Comparing more than two alternatives	

Week 7	6. Measurement Tools and Techniques	2 Hours
	• Events and measurement strategies	
	Interval timers	
	Program profiling	
	• Event tracing	
	• Indirect and ad hoc measurements	
	Perturbations due to measuring	
Week 8	7. Benchmark programs	2 Hours
	• Types of benchmark programs	
	Benchmark strategies	
	• Example benchmark programs	
Week 9	8. Linear-Regression Models	2 Hours
	Least-squares minimization	
	Confidence intervals for regression parameters	
	Correlation	
	Multiple linear regression	
	Verifying linearity	
	Nonlinear models	
Week 10	9. The Design of Experiments	2 Hours
	• Types of Experiments	
	Terminology	
	Two-Factor Experiments	
	Generalized m-factor Experiments	
	• n2 ^m Experiments	
Week 11,	10. Simulation and Random-Number Generation	4 Hours
12	Simulation-efficiency Considerations	
	Types of Simulations	
	Random-Number Generation	
	• Verification and validation of simulations	
	Continuous Assessment II	
After Week 12	11. Examinations	
Recommended Re	eading Material	I
1. David J.	Lilja. (1997). Measuring Computer Performance: A Practic	tioner's Guide,
Cambride University Press, Trumpington Street, Cambridge, United kingdom.		
2. Kant K. (1992). Introduction to Computer System Performance Evaluation, McGraw-Hill		
Inc., United Kingdom.		
 Haverkort B. R. (1998). Performance of Computer Communication Systems, John Wiley and Sons Ltd. 		

4. Harchol-Balter M. (2013). Performance Modeling and Design of Computer Systems, Cambridge University Press, United Kingdom.

	FEDERAL UNIVERSITY LOKOJA COURSE OUTLINE	
Faculty	Sciences	
Department	Computer Sciences	
Year of Study	4	
Course Code	CSC 424	
Credit Hours	3	
Contact Hours	42	
Pre-requisite		
Mode of Delivery	Lectures, Practicals	
Mode of Assessment	Assignment, Test, Project and Examination	
Presentation/Project		20%
Continuous		20%
Assessment Final Examination		60%
Total	100%	
Course Lecturers and Instructors	Dr Frederick Duniya BASAKY	
Course Description	Modelling and Simulation	
Course Objectives	 At the end of the course students should be able to; know the basic concepts of modelling and simulation Know the applications of modelling and simulation, Understand simulation processes Solve real life problems applying modelling and simulation, Model and simulate some basic statistical distribution theory 	
Learning Outcome		
Teaching and Learning Detailed Course Content	This course, 3- credit units will meet three times the project -Introduction to the Modelling and Simulation, - What is a Model? -What is Modelling? -What is Stimulation -Introductory definitions -Basic uses of Modelling and Simulation - Simulation processes -Some basic statistical distribution theory Queue - Basic components of queues - Queueing rules -Special types of Queues	

CSC424 – Modelling and Simulation (3 Units)

	 Stochastic process, Application of Stochastic process Discrete state and continuous state process and their applications Poisson Process and Applications of Poisson Process Random numbers and applications
Course Content Seq	uencing
Week1	Introducing the course and the course contents for the semester
Weeks 2 and 3	-Introduction to the Modelling and Simulation,
Weeks 4, 5 and 6	 What is a Model? What is Modelling? What is Stimulation Introductory definitions Basic uses of Modelling and Simulation Simulation processes
Weeks 7,and 8	Some basic statistical distribution theory Queues - Basic components of queues - Queueing rules -Special types of Queues
Weeks 9, 10 and 11	Stochastic process, - Application of Stochastic process - Discrete state and continuous state process and their - Poisson Process and - Applications of Poisson Process -Random numbers and applications
Weeks 12 and 13	Projects presentation and defence and assessment
Week14	Revision

CSC432 – Formal Methods in Software Engineering (3 Units)

FEDERAL UNIVERSITY LOKOJA COURSE OUTLINE		
Faculty	Sciences	
Department	Computer Science	
Course Title	Formal Methods in Software Engineering	
Year of Study	IV	
Course Code	CSC432	
Credit Hours	3	
Contact Hours	36	
Pre-requisite(s)	Nil	
Mode of Delivery	Classroom Lectures	
Mode of Assessment W		Weight%
Continuous Assessment 4		40%
Final Examination60%		60%

Total	100%	
Course Lecturers	Terungwa Simon Yange	
Course	Formal Methods supports the production of highly-reliable Software. In this	
Description	course, students would learn a collection of techniques for formal software	
	development, spanning the whole development process: from high-level	
	semantic modeling to coding and debugging. The study will not be done in	
	the abstract, however, but through the use of actual tools supporting these	
	techniques.	
Course	This course would enable the understanding of the following:	
Objectives	1. The precise specification of run-time properties that a software system	
	is expected to satisfy through the construction of highly reliable	
	Software	
	2.CSP and UML for Software Construction	
	3. How to solve problems with specifications that are precise in formal	
	syntax, semantics, and theory	
	4. How to define unambiguous, high-quality specifications, and build	
	provide a background for automated tool support.	
	5. How to construct highly automated verification tools that help software	
	developers analyze specifications and corresponding code, looking for	
	errors in requirements, models, designs, and implementations.	
Learning	At the end of the course, students will be able to:	
Outcomes	1.Demonstrate an understanding of the precise specification of run-time	
	properties that a software system is expected to satisfy through the	
	construction of highly reliable Software	
	2.Deploy CSP and UML for Software Construction	
	3.Define and solve problems with specifications that are precise in formal	
	syntax, semantics, and theory	
	4.Define unambiguous, high-quality specifications, and build provide a	
	background for automated tool support.	
	5.Construct highly automated verification tools that help software	
	developers analyze specifications and corresponding code, looking for	
	errors in requirements, models, designs, and implementations.	
Teaching and	5. Lectures: Detailed content of course are taught in class using	
Learning and	problem solving approaches	
	6. Presentations: Course contents are shared among students to	
	research on. Students are grouped or assigned work to individually	
	present. This is done for the purpose of self-reading improvement	
	and student assessment.	
	7. Laboratory Practical: Laboratory sessions will be based on	
	1. Laboratory reaction. Laboratory sessions will be based off	

	Problem solving and software modelling using	Python, Alloy,	
	Lustre, Dafny Static Analysis using Java		
	8. Project: Students will be required to formulate p	roblems in the	
	different areas of the course content, design the sol	lutions to these	
	problems and solve them.		
Detailed Course	Introduction: Mathematical Foundations - Naive set theory	v, Propositional	
Content	logic, First-order logic, Reasoning about programs: inva	ariants, Hoare-	
	Logic, Termination. Formal specifications: the Z notation, R	easoning about	
	specifications, Refining specifications into (Python) c	ode. Software	
	Specification: High-level semantic design, System design a	nd behavioural	
	properties, Code-level properties. Main Software Validati		
	Model Finding/Checking: often automatic, abstract Deductiv	ve Verification:	
	typically semi-automatic, precise (source code le		
	Interpretation: automatic, correct, not complete, terminate	es. Design and	
	model software systems in the Alloy language. Write system	m and property	
	specifications in Lustre language, Recap of basic notions	in set theory.	
	Relations and relational operators. Modelling general sof	-	
	Introduction to the Alloy modelling language (or any o	-	
	language of instructor's choice). Alloy's foundations. Signat	ures, fields and	
	multiplicity constraints. Modelling simple domains in All	oy. Generating	
	and analysing model instances with the Alloy Analyzer.	Relations and	
	operations on them. Formulas, Boolean operators an	nd quantifiers.	
	Expressing constraints on relations using Alloy formu	las. Facts and	
	assertions. Checking models and assertions with the A	lloy Analyzer.	
	Practice with writing Lustre models and expressing their properties.		
	Checking properties via synchronous observers. Sim	ulating Lustre	
	programs with the Kind 2 tool. Specifying and verifying pro	ograms in high-	
	level programming languages. Introduction to Dafny.	Main features.	
	Specifying pre and post-conditions.		
Course Content Sequencing			
Weeks	Detailed Course Outline	Allocated	
Week1	1. Mathematical Foundations and Formal	Time 3 Hours	
	specifications		
	Naive set theory		
	Propositional logic and First-order logic		
	Reasoning about programs: invariants, Hoare-		
	Logic, Termination.		
	• Z notation, Reasoning about specifications,		
	Refining specifications into (Python) code.		

Week2,3	 Software Specification: High-level semantic design, System design and behavioural properties, Code-level properties. Main Software Validation Techniques Model Finding/Checking: often automatic, abstract Deductive Verification: typically semi- automatic, precise (source code level) Abstract 	6 Hours
	Interpretation: automatic, correct, not complete, terminates.	
	Continuous Assessment I	
Week4,5,6	3. Design and model software systems in the Alloy language. Write system and property specifications in Lustre language, Recap of basic notions in set theory. Relations and relational operators. Modelling general software systems. Introduction to the Alloy modelling language (or any other modelling language of instructor's choice). Alloy's foundations.	9 Hours
Week7,8	 4. Signatures, fields and multiplicity constraints. Modelling simple domains in Alloy. Generating and analysing model instances with the Alloy Analyzer. Relations and operations on them. Formulas, Boolean operators and quantifiers. Expressing constraints on relations using Alloy formulas. 	6 hours
Week9,10,11,12	 5. Facts and assertions. Checking models and assertions with the Alloy Analyzer. Practice with writing Lustre models and expressing their properties. Checking properties via synchronous observers. Simulating Lustre programs with the Kind 2 tool. Specifying and verifying programs in high-level programming languages. Introduction to Dafny. Main features. Specifying pre and post-conditions. Revision and Continuous Assessment II 	12 Hours
After Week 12	6. Examinations	

Recommended Reading Material

- Heitmeyer, C. L., Jeffords, R. D., & Labaw, B. G. (1996). Automated Consistency Checking of Requirements Specifications. ACM Transactions on Software Engineering and Methodology, 5(3), 231-261.
- van Vliet, H. (1999). "Software Engineering: Principles and Practice (2nd Edition)" Wiley.
- 3. Spivey, J. M. (1998). The Z Notation: A Reference Manual 2nd Edition
- 4. John C Martin Introduction to languages and the Theory of Computation.
- 5. Mishra K. L.P. and Chandrashekaran N. (2008). Theory of Computer Science Automata languages and computation -, 3rd edition, Prentice-Hall, India